Answer:
v2 = 27.3m/s
Explanation:
Assuming forward as positive.
Mass = m1 = 64kg
Let v be the common velocity of the student and the skateboard.
mass of skateboard = m2 = 5.94kg
v = 1.4m/s
Since the skateboard and the student are initially moving together at the same velocity their momentum together is
(m1 + m2)v
Let the final velocity of the student be v1 and the final velocity of the skateboard be v2
v1 = – 1.0m/s (falls backwards that's why the velocity is negative since we are assuming forward as positive)
Then from conservation of momentum, momentum before is equal to momentum after.
(m1 + m2)v = m1v1 + m2v2
m2v2= (m1 + m2)v – m1v1
v2 = ( (m1 + m2)v – m1v1)/m2
v2 = ( (64 + 5.94)×1.4 – 64×(-1.0))/5.94
v2 = ( (64 + 5.94)×1.4 + 64×1.0)/5.94
v2 = 27.3m/s
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)
Answer:
4:28
Explanation:
4:28am
a 12 hour clock continues going up after 12 (1:00pm=13:00). minutes stay the same. 12:00pm=00:00. this shows 4:28am, so you count 4 after 00:00.