Answer:
The velocity of a falling object
Explanation:
The positive X axis is towards right and positive Y axis is towards up, so North direction is positive
A vector with less than 1 magnitude is not negative, because its magnitude may be in between 0 and 1 which is positive vector.
Any vector whose magnitude is greater than 1 is never be a negative vector.
The velocity of a falling object is towards bottom, that is towards negative Y axis. So that vector is negative.
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
Answer:
Yes
Explanation:
In a third-class lever, the effort force lies between the resistance force and the fulcrum. Some kinds of garden tools are examples of third-class levers. When you use a shovel, for example, you hold one end steady to act as the fulcrum, and you use your other hand to pull up on a load of dirt.