Answer:
Kindly check the explanation section.
Explanation:
For the design we are asked for in this question/problem there is the need for us to calculate or determine the strength in fracture and that of the yield. Also, we need to calculate for the block shear strength.
From the question, we have that the factored load = 500kips. Also, note that the tension splice must not slip.
Also, the shear force are resisted by friction, that is to say shear resistance = 1.13 × Tb × Ns.
Assuming our db = 3/4 inches, then the slip critical resistance to shear service load = 18ksi(refer to AISC manual for the table).
If db = 7/8 inches, then the shear force resistance for n bolt = 10.2kips, n > 49.6.
The yielding strength = 0.9 × Aj × Fhb= 736 kips > 500
The fracture strength = .75 × Ah × Fhb = 309 kips.
The bearing strength of 7/8 inches bolt at the edge hole and other holes = 46 kips and 102 kips.
Answer:
<em>The frequency changes by a factor of 0.27.</em>
<em></em>
Explanation:
The frequency of an object with mass m attached to a spring is given as
= 
where
is the frequency
k is the spring constant of the spring
m is the mass of the substance on the spring.
If the mass of the system is increased by 14 means the new frequency becomes
= 
simplifying, we have
= 
= 
if we divide this final frequency by the original frequency, we'll have
==>
÷
==>
x
==> 1/3.742 = <em>0.27</em>
Answer:8540 kg-g/s
Explanation:
Given
mass of blue car 
velocity of blue car 
mass of the truck 
speed of truck 
After collision they stick and lock together
Let v be the velocity of combined system at angle \theta from vertical
Conserving momentum in east direction

------1
Conserving Momentum in Y direction

-------2
squaring and then adding 1 & 2 we get

v=10.95 m/s
initial momentum of car
a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,
