Answer:
Objects with mass exert forces on each other via the force of gravity. This force is proportional to the mass of the two interacting objects, and is inversely proportional to the square of the distance between them. The factors G, M, and r are the same for all masses at the surface of the Earth.
<span>The rule of inertia states that an object in motion will stay in motion unless another force has acted upon it. Because the person doesn't have their seatbelt on, they will keep moving. But if they were wearing a seatbelt, that would work as the force that is supposed to stop the person from flying forward.
Hope this helps :)
Please give brainliest</span>
<span>Acceleration is the rate of
change of the velocity of an object that is moving. This value is a result of
all the forces that is acting on an object which is described by Newton's
second law of motion. Calculations of such is straightforward, if we are given
the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:
d = v0t + at^2/2
We cancel the term with v0 since it is initially at rest,
d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2
</span>
Answer:
v = 57.2 m/s
Explanation:
The average velocity of the train can be defined as the total distance covered by the train divided by the time taken by the train to cover that distance. Therefore, we will use the following formula to find the average velocity of the train:
v = s/t
where,
s = distance covered = 460 km = (460 km)(1000 m/1 km) = 4.6 x 10⁵ m
t = time taken to cover the distance = 2 h 14 min
Now, we convert it into minutes:
t = (2 h)(60 min/1 h) + 14 min
t = 120 min + 14 min = (134 min)(60 s/1 min)
t = 8040 s
Therefore, the value of velocity will be:
v = (4.6 x 10⁵ m)/8040 s
<u>v = 57.2 m/s</u>
The answer is C) <span>The higher frequencies of visible light were scattered by the colloid particles.</span>