The nebular theory describes the formation of the solar system and states that the system began as a gigantic cloud of gas and dust called a nebula which eventually condensed to form the sun, planets and other objects in the solar system. The first fact speaks to the formation of the planets, where gravity pulled larger clumps of material closer to form solid rocky planets closer to the sun and gas giants further out. The second requirement is that a nearby explosion or super nova would have to disturb our nebula to trigger rotation and the eventual formation of the sun. The third requirement/fact is that the planets go around the sun in the same direction. the last fact is that the planets go around the sun within 6 degrees of a common plane. This indicates that the solar system formed from a spinning disk of materials.
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
<h2>Answer: a. Yellow
</h2>
According to the additive theory of color, when we join the <u>three primary colors of light</u> (Red + Green + Blue) we get White light.
On the other hand we have <u>secondary colors of ligh</u>t that are:
Yellow = Red + Green
Magenta = Blue + Red
Cyan = Blue + Green
Now, if we know that:
Red + Green + Blue = White
And:
Red + Green = Yellow
Then:
<h2>Yellow + Blue = White</h2>