Answer:
λ = 1.4 × 10^(-7) m
Explanation:
We are given;
distance of eye piece from the source;D = 1.5 m
distance between the virtual sources;d = 7.5 × 10^(-4) m
To find the wavelength, we will use the formula for fringe width;
X = λD/d
Where X is fringe width, λ is wavelength, while d and D remain as before.
Now, fringe width = eye-piece distance moved transversely/number of fringes
Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m
Thus,
Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m
Thus;
1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))
λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5
λ = 1.4 × 10^(-7) m
Answer:
Explanation:
As the circuit is parallel, then there is no effect of other branches as the potential difference across each arm is same.
Answer:
40 cm
Explanation:
We are given that
Load=800 N
Effort=200 N
Load distance=10 cm
We have to find the effort distance.
We know that

Using the formula

Effort distance=
Effort distance=
Effort distance=40 cm
Hence, the effort distance will be 40 cm.