1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
2 years ago
11

Find area of the isosceles triangle formed by the vertex and the x-intercepts of parabola y=x2+4x−12.

Mathematics
1 answer:
xz_007 [3.2K]2 years ago
6 0

The area of the isosceles triangle is 64 sq units.

<u>Solution:</u>

Part 1: x-intercepts

The x-intercepts occur at the points on the function where y=0

So, we need to solve

x^2-4x-12=0

The left side factors fairly easily into:

(x-6)(x+2)=0

So solution occur when

x-6=0\rightarrow x=6

and

x+2=0\rightarrow x=(-2)

So the x-intercepts are at (0,6) and (0,−2)

Part 2: vertex of the parabola

The vertex of a simple quadratic parabola occurs when the derivative of the quadratic is equal to 0.

The derivative of the given quadratic is

\frac{dy}{dx}=2x-4

By observation, this is equal to 0 when x=2

When x=2 the original equation becomes

y=(2)^2-4(2)-12

y=-16

Therefore the vertex of this parabola is at (2,−16)

The endpoints of the base of the isosceles triangle are (-6, 0) and (2, 0)

\Rightarrow so its base is 8

The height of the triangle reaches from the midpoint of the base (-2, 0) and the vertex (2, -16)

\Rightarrow so its height is 16

The area is  \frac{1}{2}\times \text { base }\times \text { height }=\frac{1}{2}\times8\times16=64 \text{ sq units }

You might be interested in
The face of a clock has a circumference of 63 in what is the area of the face of the clock​
Rudik [331]
Answer: 5 ft 3 in I believe.
7 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Find the length of side x in simplest radical form with a rational denominator.
kogti [31]

Answer:

since it is Right angled isosceles triangle it's base side are equal

by using Pythagoras law

x²+x²=1²

2x²=1

x=√{1/2}or 0.707 or 0.71

6 0
3 years ago
1. Which number is a perfect square?<br> A 4<br> B 6<br> C 8<br> D 10
Vladimir [108]

Answer:

4

Step-by-step explanation:

when you multiply a number by itself, therefore you have to multiple 2twice

5 0
3 years ago
What is 7 devided by 245 and show work
agasfer [191]

1. <span>Set up the long division.
</span>
<span>245/7</span>

2. <span>Calculate 700 ÷ 245, which is 2 with a remainder of 210.
</span>
<span><span>0.02</span><span>245/7.</span><span>4.90</span><span>2.10</span></span>

3. <span>Bring down 0, so that 2100 is large enough to be divided by 245.
</span>
<span><span>0.02</span><span>245|/.</span><span>4.90</span><span>2.100</span></span>

4. <span>Calculate 2100 ÷ 245, which is 8 with a remainder of 140.
</span>
<span><span>0.028</span><span>245|/.</span><span>4.90</span><span>2.100</span><span>1.960</span><span>140</span></span>

5. <span>Bring down 0, so that 1400 is large enough to be divided by 245.
</span>
<span><span>0.028</span><span>245/7.</span><span>4.90</span><span>2.100</span><span>1.960</span><span>1400</span></span>
6. <span>Calculate 1400 ÷ 245, which is 5 with a remainder of 175.
</span>
<span><span>0.0285</span><span>245|7.</span><span>4.90</span><span>2.100</span><span>1.960</span><span>1400</span><span>1225</span><span>175</span></span>

7. <span>Therefore, 7 divided by 245 approximately equals 0.0285
</span><span><span>7÷245≈0.0285</span></span>

8. <span>Simplify
</span><span><span><span>0.0285  <------------- Answer :) </span></span>
</span>

8 0
2 years ago
Other questions:
  • The shadow cast by a house is 55 feet long. At the same time, a flagpole that is 15 feet tall casts a 25 foot long shadow. How t
    12·1 answer
  • Which of the following represents "eight times the difference of a number and three is sixty-four"?
    11·1 answer
  • Which of the following equations, where ddd is distance in miles and ttt is time in hours, represents a speed that is less than
    15·2 answers
  • Tanya is 62 inches tall. She is 17 inches taller than May. Write and solve an equation to find May's height.
    6·1 answer
  • I need help pleaseee
    5·1 answer
  • Simplify the expression<br> (3x4 + 9x3 – 7x + 15) + (-6X4 – 8x2 + 5x – 3)
    15·1 answer
  • Find the value of x please help<br>Will give brainliest​
    15·1 answer
  • Which number can be used as a common denominator for the fractions 1/4 and 5/6? Check all that apply.
    8·1 answer
  • Anyone can help me with math for solving for a side in the right triangles for khan academy
    12·1 answer
  • If <br><br><br> Plz help ASAP! Thank you
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!