1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
15

Two parallel wires carry equal currents in the opposite directions. Point A is midway between the wires, and B is an equal dista

nce on the other side of the wires. What is the ratio of the magnitude of the magnetic field at point A to that at point B?
Physics
1 answer:
zepelin [54]3 years ago
4 0

Answer:

Complete Question:(missing part)

The current in the left wire having magnitude is  = 210 A

The Current in the right wire having magnitude is = 10 A

Answer:

a.B net = \frac{\mu_{0} }{2\pi(\frac{d}{2}) } (I_{1} +I_{2} )

Ratio = B 1/B 2 = 210/10 = 21

b.B net = \frac{\mu_{0} }{2\pi(\frac{d}{2}) } (\frac{I_{1}}{3}-I_{1}} )

Ratio = B 1/B 2 = 210/3 X10 = 7

Explanation:

Ratio of the magnitude of the magnetic field at point A to that at point B =?

The current in the left wire having magnitude is  = 210 A

The Current in the right wire having magnitude is = 10 A

distance between two wires = d

Given that both wires are carrying equal current but in opposite direction therefore

Magnetic field linked with the left wire at point A distance =d/2= according to biot savarts law

B = \frac{\mu_{0} \times I_{1} }{2\pi\times\frac{d}{2} }

Magnetic field linked with the right wire at point B distance =d/2

B = \frac{\mu_{0} \times I_{2} }{2\pi\times\frac{d}{2} }

Net magnetic field added

B net = B 1 + B 2

B net = \frac{\mu_{0} }{2\pi(\frac{d}{2}) } (I_{1} +I_{2} )

Ratio = B 1/B 2 = 210/10 = 21

Magnetic field linked to left wire at point B(d+ d/2)

B = \frac{\mu_{0} \times I_{1} }{2\pi\times\frac{3d}{2} }

Magnetic field linked to right wire at point B(d+ d/2)

B = \frac{\mu_{0} \times I_{2} }{2\pi\times\frac{3d}{2} }

Net magnetic field subtracted

B net = B 1 - B 2

B net = \frac{\mu_{0} }{2\pi(\frac{d}{2}) } (\frac{I_{1} }{3}-1 }  )

Ratio = B 1/B 2 = 210/3 X10 = 7

You might be interested in
Which type of energy is stored in chemical compounds and released in chemical reactions?
astraxan [27]

Answer:

potential

Explanation:

4 0
3 years ago
Which of these is another name for Newton's
dezoksy [38]
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
5 0
3 years ago
Read 2 more answers
A cart travels down a ramp at an average speed of 5.00 centimeters/second. What is the speed of the cart in
Lostsunrise [7]
<span>A cart travels down a ramp at an average speed of 5.00 centimeters/second. What is the speed of the cart in miles/hour?  </span> To solve this problem we have set the conversion values to determine the product during the conversion process. <span><span>
1.   </span>1 centimeter = 0.00000621371 mile</span> <span><span>
2.   </span><span> 1 hour = 60 minutes</span></span> <span><span>3.   </span><span> 1 minute = 60 seconds</span></span>
Thus, we shall have
<span><span>1.   </span>5 cm x 0.00000621371 mile/1cm = 0.000031069 mi</span>
<span><span>2.   </span>0.000031069 seconds x 1 hr / 3600 = 0.111846815 miles / hr</span>  



8 0
3 years ago
Read 2 more answers
The unit for IMA is _____. newtons joules meters IMA is unitless
Sonja [21]

The correct answer to the question is unitless i.e the IMA of a mechanical system has no unit.

EXPLANATION:

The IMA of a mechanical system stands for ideal mechanical advantage.  It can be defined as the number of times the input or effort force provided to the mechanical system is multiplied under ideal conditions. The ideal conditions means that the system is free from friction, air resistance etc.

Let us consider d_{i} is the distance over which the input force is applied.

Let d_{0} is the distance over which the output force is applied.

The ideal mechanical advantage of the system is calculated as -

                    IMA = \frac{d_{i}} {d_{0}}.

Both d_{i}\ and\ d_{0} are measured in distance unit.

Hence, IMA is a unitless physical quantity.

7 0
4 years ago
Read 2 more answers
A spring (k=15.19kN/m)is is compresses 25cm and held in place on a 36.87° incline. A block (M=10kg) is placed on the spring. Whe
Savatey [412]

Answer:

The maximum vertical displacement is 2.07 meters.

Explanation:

We can solve this problem using energy. Since there is a frictional force acting on the block, we need to consider the work done by this force. So, the initial potential energy stored in the spring is transferred to the block and it starts to move upwards. Let's name the point at which the block leaves the ramp "1" and the highest point of its trajectory in the air "2". Then, we can say that:

E_0=E_1\\\\U_e_0=K_1+U_g_1+W_f_1

Where U_e_0 is the elastic potential energy stored in the spring, K_1 is the kinetic energy of the block at point 1, U_g_1 is the gravitational potential energy of the block at point 1, and W_f_1 is the work done by friction at point 1.

Now, rearranging the equation we obtain:

\frac{1}{2}kx^{2}=\frac{1}{2}mv_1^{2}+mgh_1+\mu Ns_1

Where k is the spring constant, x is the compression of the spring, m is the mass of the block, v_1 is the speed at point 1, g is the acceleration due to gravity, h_1 is the vertical height of the block at point 1, \mu is the coefficient of kinetic friction, N is the magnitude of the normal force and s_1 is the displacement of the block along the ramp to point 1.

Since the force is in an inclined plane, the normal force is equal to:

N=mg\cos\theta

Where \theta is the angle of the ramp.

We can find the height h_1 using trigonometry:

h_1=s_1\sin\theta

Then, our equation becomes:

\frac{1}{2}kx^{2}=\frac{1}{2}mv_1^{2}+mgs_1\sin\theta+\mu mgs_1\cos\theta\\\\\implies v_1=\sqrt{\frac{2(\frac{1}{2}kx^{2}-mgs_1\sin\theta-\mu mgs_1\cos\theta)}{m}}=\sqrt{\frac{kx^{2}}{m}-2gs_1(\sin\theta+\mu \cos\theta)}

Plugging in the known values, we get:

v_1=\sqrt{\frac{(15190N/m)(0.25m)^{2}}{10kg}-2(9.8m/s^{2})(1.12m)(\sin36.87\°+(0.300) \cos36.87\°)}\\\\v_1=8.75m/s

Now, we can obtain the height from point 1 to point 2 using the kinematics equations. We care about the vertical axis, so first we calculate the vertical component of the velocity at point 1:

v_1_y=v_1\sin\theta=(8.75m/s)\sin36.87\°=5.25m/s

Now, we have:

y=\frac{v_1_y^{2}}{2g}\\\\y=\frac{(5.25m/s)^{2}}{2(9.8m/s^{2})}\\\\y=1.40m

Finally, the maximum vertical displacement h_2 is equal to the height h_1 plus the vertical displacement y:

h_2=h_1+y=s_1\sin\theta +y\\\\h_2=(1.12m)\sin36.87\°+1.40m\\\\h_2=2.07m

It means that the maximum vertical displacement of the block after it becomes airborne is 2.07 meters.

7 0
3 years ago
Other questions:
  • HELPPP WILL GIVE BRAINLIEST!!!!
    11·1 answer
  • What is an example of a wheel and an axle
    10·2 answers
  • Which of the following are homogeneous solutions?
    14·1 answer
  • You take a couple of capacitors and connect them in series, to which you observe a total capacitance
    12·1 answer
  • You want to create a special device to keep coffee warm. Which type of electromagnetic wave would be most useful to investigate?
    8·2 answers
  • Two or more atoms joined into a single particular form a(n)
    11·2 answers
  • Identify the forces acting on the object of interest. From the list below, select the forces that act on the piano.
    7·1 answer
  • The highest point on the American eagle roller coaster is 39 meters above the ground. Find the potential energy of a 625 kg roll
    8·1 answer
  • One way to provide artificial gravity (i.e., a feeling of weight) on long space voyages is to separate a spacecraft into two par
    9·1 answer
  • How does the gravitational pull of the blue supergiants impact the direction of your star?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!