Answer:
<em>The second ball has four times as much kinetic energy as the first ball.</em>
Explanation:
<u>Kinetic Energy
</u>
Is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
Two tennis balls have the same mass m and are served at speeds v1=30 m/s and v2=60 m/s.
The kinetic energy of the first ball is:



The kinetic energy of the second ball is:



Being m the same for both balls, the second ball has more kinetic energy than the first ball.
To find out how much, we find the ratio:

Simplifying:

The second ball has four times as much kinetic energy as the first ball.
Answer:
d) It will be cut to a fourth of the original force.
Explanation:
The magnitude of the electrostatic force between the charged objects is

where
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is the separation between the two objects
In this problem, the initial distance is doubled, so
r' = 2r
Therefore, the new electrostatic force will be

So, the force will be cut to 1/4 of the original value.
First, we need to convert the pressure in SI units. Keeping in mind that

:

The initial and final volume of the gas are (keeping in mind that

):


So, the work done on the gas by the surrounding is

And the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Complete Question
Suppose you hit a steel nail with a 0.500-kg hammer, initially moving at 15.0 m/s and brought to rest in 2.80 mm. How much is the nail compressed if it is 2.50 mm in diameter and 6.00-cm long.What Average force is excreted on the Nail
Answer:

Explanation:
From the question we are told that:
Mass 
Initial Velocity 
Distance 
Diameter 
Length 
Generally the equation for Force is mathematically given by


