Answer:
The kinetic energy for both objects is the same.
Explanation:
While in other cases the kinetic energies of two objects that have different masses might be different depending on their velocities, in this case both the 3 kg book and 5 kg bowling ball have the same kinetic energy.
This is because kinetic energy is calculated using the formula: K = 1/2 * m * v^2, where m represents the mass and v represents the velocity of the object.
Since the book and the bowling ball are sitting still on the floor, their velocities are zero. Hence, when we plug in 0 for velocity into the equation for kinetic energy, we will get that the kinetic energy is 0 for the book and the bowling ball.
Hope this helps!
<span>λν=c
(wavelength x frequency = speed)
speed = 45 x 0.1
= 4.5 m/s</span>
The centripetal force, Fc, is calculated through the equation,
Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius.
Substituting the known values,
Fc = (112 kg)(8.9 m/s)² / (15.5 m)
= 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N.
Answer:
a. 
b. 
Explanation:
I have attached an illustration of a solid disk with the respective forces applied, as stated in this question.
Forces applied to the solid disk include:

Other parameters given include:
Mass of solid disk, 
and radius of solid disk, 
a.) The formula for determining torque (
), is 
Hence the net torque produced by the two forces is given as a summation of both forces:

b.) The angular acceleration of the disk can be found thus:
using the formula for the Moment of Inertia of a solid disk;

where
= Mass of solid disk
and
= radius of solid disk
We then relate the torque and angular acceleration (
) with the formula:
