0.5
Explanation:
Given parameters:
Mass of Ca²⁺ = 10g
unknown:
Equivalent weight = ?
Solution:
Equivalent weight that is the amount of electrons which a substance gains or loses per mole.
Ca²⁺ has +3 charge
It lost 2e⁻;
therefore;
In 1 mole of Ca²⁺, we have 2 equivalent weight
1 mol Ca²⁺ = 2eq. wts.
1 mol Ca x (40 g / 1 mol ) x (1 mol / 2 eq.wts.) = 20.0 g = 1 eq.wt.
Therefore;
10.0 g Ca²⁺ x (1 eq.wt. / 20.0 g) = 0.5 eq.wts.
learn more:
Molar mass brainly.com/question/2861244
#learnwithBrainly
Answer:
The volume of the gasoline in the tank is 18.85 cubic feet
Explanation:
The tank is a cylinder. The equation for calculating the cylinder volumen is πr²*h, r is radius and h is height. π is approximately 3.1416. So, The tank is resting horizontally on its side, its radius is 2 feet/2= 1 feet. h=a tank long= 6 feet.
With equation:
Vol gasoline=3.1416*1²*6=18.85 feet ³
I hope my answer helps you
Copper foam and ceramic would answer you question down below<span />
Answer:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Explanation:
Step 1: The balanced equation
2HCl(aq)+Ca(OH)2(aq) → 2H2O(l)+CaCl2(aq)
This equation is balanced, we do not have the change any coefficients.
Step 2: The netionic equation
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will.
2H+(aq) + 2Cl-(aq) + Ca^2+(aq) + 2OH-(aq) → 2H2O(l) + Ca^2+(aq) + 2Cl-(aq)
After canceling those spectator ions in both side, look like this:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Answer:
The given statement - The main criterion for sigma bond formation is that the two bonded atoms have valence orbitals with lobes that point directly at each other along the line between the two nuclei , is <u>True.</u>
Explanation:
The above statement is correct , because the sigma bond is produced by the head on overlapping, the orbitals should all point in the same direction.
<u>SIGMA BONDS -</u> Sigma bonds (bonds) are the strongest type of covalent chemical bond in chemistry. They're made up of atomic orbitals that collide head-on. For diatomic molecules, sigma bonding is best characterized using the language and tools of symmetry groups.
Head-on overlapping of atomic orbitals produces sigma bonds. The concept of sigma bonding is expanded to include bonding interactions where a single lobe of one orbital overlaps with a single lobe of another. Propane, for example, is made up of ten sigma bonds, one for each of the two CC bonds and one for each of the eight CH bonds.
Hence , the answer is true .