Answer:
Thy bought 150 Sweatshirts (x) and 250 tshirts (y)
Step-by-step explanation:
35x + 25y = 11500
x + y = 400
-25 (x + y = 400) Multiply by -25 to get the y's to disappear when you add the two equations together
-25x - 25y = 10000
<u> 35x + 25y = 11500 </u>
10x =1500
x = 150
Plug 150 in either equation for x to find y
150 + y = 400
y = 250
5 - 6 = -1
2 + 7 = 9
-1 × 9 = -9
-9 would be the simplified answer.
Hope this helps!
Answer:
Algorithm
Start
Int n // To represent the number of array
Input n
Int countsearch = 0
float search
Float [] numbers // To represent an array of non decreasing number
// Input array elements but first Initialise a counter element
Int count = 0, digit
Do
// Check if element to be inserted is the first element
If(count == 0) Then
Input numbers[count]
Else
lbl: Input digit
If(digit > numbers[count-1]) then
numbers[count] = digit
Else
Output "Number must be greater than the previous number"
Goto lbl
Endif
Endif
count = count + 1
While(count<n)
count = 0
// Input element to count
input search
// Begin searching and counting
Do
if(numbers [count] == search)
countsearch = countsearch+1;
End if
While (count < n)
Output count
Program to illustrate the above
// Written in C++
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main()
{
// Variable declaration
float [] numbers;
int n, count;
float num, searchdigit;
cout<<"Number of array elements: ";
cin>> n;
// Enter array element
for(int I = 0; I<n;I++)
{
if(I == 0)
{
cin>>numbers [0]
}
else
{
lbl: cin>>num;
if(num >= numbers [I])
{
numbers [I] = num;
}
else
{
goto lbl;
}
}
// Search for a particular number
int search;
cin>>searchdigit;
for(int I = 0; I<n; I++)
{
if(numbers[I] == searchdigit
search++
}
}
// Print result
cout<<search;
return 0;
}
Answer:
(-1,1)
Step-by-step explanation:
Answer : option A
In logarithmic Parent function, there will be a vertical asymptote.
In the given graph , there is a horizontal asymptote. The graph goes close to y axis but does not cross y axis.
The graph goes close to y axis so there is a horizontal asymptote. Its not a parent logarithmic function.
The graph of exponential function with base 0 to 1 , the y value decreases when x increases. In the given graph the y values increases when x value increases. so the base of the exponential function will be greater than 1
Option A is correct