Answer:
a. Hydrocarbons have low boiling points compared to compounds of similar molar mass.
b. Hydrocarbons are hydrophobic.
d. Hydrocarbons are insoluble in water.
Explanation:
As we know that the hydrocarbons is a mix of carbon and hydrogen. In this the availability of the electronegative atom is not there that shows there is no bonding of the hydrogen plus it is dissolved. Also, the hydrocarbons is considered to be a non-polar but as compared to the water, water is a polar
In addition to this, the strong bond is no existed that shows the lower boiling points
Therefore option A, B and D are right
Answer:
The right choice is c. Water molecules have a weakly positive hydrogen end.
Explanation:
The unequal sharing of electrons in water molecule gives a slight negative charge near its oxygen atom ( see image below) and a slight positive charge near its hydrogen atoms. A neutral molecule that has a partial positive charge at one end and a partial negative charge at the other, it is a polar molecule.
so
a. Water molecules have a nonpolar bond.
It is wrong choice because water has polar bond .
b. Water molecules have a weakly positive oxygen end.
Also, a wrong choice due to water molecule gives a slight negative charge near its oxygen atom.
c. Water molecules have a weakly positive hydrogen end.
This is the right choice.
d. Water molecules have two oxygen and two hydrogen atoms
It is wrong choice because water has one oxygen and two hydrogen atoms
<u>So, the right choice is</u>
c. Water molecules have a weakly positive hydrogen end.
This problems involves the equation, please take a picture.
Answer:
The water at 38 °C has faster-moving molecules than the sample at 295 K.
Explanation:
Converting the temperature, 295 K from Kelvin to Celsius:
295 - 273 = 22°C
⇒The boiling point of water is 100°C and its melting point 0°C
⇒When we compare water at those 2 different temperatures ( 22°C and 38°C) we can say that water is in liquid form at both these temperatures as both of them are quite below the boiling temperature and above the melting temperature.
⇒The difference in temperature between water at the 2 given temperatures = 38°C - 22°C = 16°C
Water at 38°C is at a higher temperature and so is warmer than water at a lower temperature of 22°C.
At the atomic scale, the kinetic energy of atoms and molecules is sometimes referred to as heat energy. Kinetic energy is also related to the concept of temperature. Temperature is defined as the measure of the average speed of atoms and molecules. The higher the temperature, the faster these particles of matter move.
About 4 C to for water density until it is cooled