1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
9

A block is attached to a spring, with spring constant k, which is attached to a wall. it is initially moved to the left a distan

ce d (at point a and then released from rest, where the block undergoes harmonic motion. the floor is frictionless.
Physics
1 answer:
Ghella [55]3 years ago
3 0

Answer:

x(t) = d*cos ( wt )

w = √(k/m)

Explanation:

Given:-

- The mass of block = m

- The spring constant = k

- The initial displacement = xi = d

Find:-

- The expression for displacement (x) as function of time (t).

Solution:-

- Consider the block as system which is initially displaced with amount (x = d) to left and then released from rest over a frictionless surface and undergoes SHM. There is only one force acting on the block i.e restoring force of the spring F = -kx in opposite direction to the motion.

- We apply the Newton's equation of motion in horizontal direction.

                             F = ma

                             -kx = ma

                             -kx = mx''

                              mx'' + kx = 0

- Solve the Auxiliary equation for the ODE above:

                              ms^2 + k = 0

                              s^2 + (k/m) = 0

                              s = +/- √(k/m) i = +/- w i

- The complementary solution for complex roots is:

                              x(t) = [ A*cos ( wt ) + B*sin ( wt ) ]

- The given initial conditions are:

                              x(0) = d

                              d = [ A*cos ( 0 ) + B*sin ( 0 ) ]

                              d = A

                              x'(0) = 0

                              x'(t) = -Aw*sin (wt) + Bw*cos(wt)

                              0 = -Aw*sin (0) + Bw*cos(0)

                              B = 0

- The required displacement-time relationship for SHM:

                               x(t) = d*cos ( wt )

                               w = √(k/m)

You might be interested in
A 1000 kg car moving at 108 km/h jams on its brakes and comes to a stop. How much work was done by friction?
Nostrana [21]

Answer:

The work done by friction was -4.5\times10^{5}\ J

Explanation:

Given that,

Mass of car = 1000 kg

Initial speed of car =108 km/h =30 m/s

When the car is stop by brakes.

Then, final speed of car will be zero.

We need to calculate the work done by friction

Using formula of work done

W=\Delta KE

W=K.E_{f}-K.E_{i}

W=\dfrac{1}{2}mv_{f}^2-\dfrac{1}{2}mv_{f}^2

Put the value of m and v

W=0-\dfrac{1}{2}\times1000\times(30)^2

W=-450000
\ J

W=-4.5\times10^{5}\ J

Hence, The work done by friction was -4.5\times10^{5}\ J

3 0
3 years ago
How much Tim in minutes will it take a car driving at 90km/hr to travel 27 kilometers
astraxan [27]

Answer:

18min

Explanation:

v=d/t

t=d/v= 27/90 =0.3hrs =18min

6 0
3 years ago
In deep space, there is very little friction. Once they launch a probe into deep space, where there are no external forces actin
Charra [1.4K]

Answer:

move at constant velocity.

Explanation:

Newton's first law (also known as law of inertia) states that:

"when the net force acting on an object is zero, the object will keep its state of rest or if it is moving, it will continue moving at constant velocity".

In the case of the probe, friction in deep space is negligible, therefore when the engine is shut down, there are no more forces acting on the probe: the net force therefore will be zero, so the probe will move at constant velocity.

5 0
3 years ago
Read 2 more answers
Although he did not present a mechanism, what were the key points of Alfred Wegener’s proposal for the concept of continental dr
valentinak56 [21]

Answer: Alfred Wegener provided some of the important points that supported the theory of continental drift. They are as follows-

  1. The continents were once all attached together, and this can be proved by studying the coastlines of some of the continents that perfectly matches with one another.
  2. The appearance of similar rock types and similar fossils (including both animals and plants) has also contributed much information that continents were once all together.
4 0
3 years ago
Do heavier objects fall more slowly than lighter objects?
aksik [14]
Think of it like this, gravity has to pull harder on the heavier object to make them fall at the same rate , but doesn't have to pull as hard for the lighter object , thus is why sometimes heavier objects fall faster then lighter ones
8 0
3 years ago
Other questions:
  • Which of the following statements is true? A. Whenever an object moves, work is being done. B. A larger force always means more
    6·1 answer
  • If the moon is new as seen from the earth, what phase would the earth be in as seen by an astronaut on the moon? explain your re
    6·1 answer
  • Only a fraction of the electrical energy supplied to a tungsten light bulb is converted to visible light. The rest of the energy
    8·1 answer
  • You are moving into an apartment and take the elevator to the 6th floor. Suppose your weight is 660 N and that of your belonging
    10·2 answers
  • 25 POINTS FOR GOOD ANSWERS!!!!!! BAD ONES WILL BE REPORTED!!!
    12·1 answer
  • If you need a wet paper towel out on the counter is a vintage I was change of state cuts is this
    15·1 answer
  • Help me please pleasee
    9·1 answer
  • HELP PLSSS I HAVE AN EXAM MONDAY AND I THINK THIS IS GONNA BE ON ITTTT
    5·1 answer
  • What energy transformation takes place when you stretch a bungee cord?
    11·1 answer
  • Un objeto de 5 Kg se mueve a 20 m⁄s, que trabajo habrá que realizar para que su velocidad se duplique:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!