Answer:
Option C is correct.
Modulus of elasticity of the composite perpendicular to the fibers = (12 × 10⁶) psi
Explanation:
For combination of materials, the properties (especially physical properties) of the resulting composite is a sum of the fractional contribution of each material thay makes up the composite.
In this composite,
The fibres = 20 vol%
Aluminium = 80 vol%
Modulus of elasticity of the composite
= [0.2 × E(fibres)] + [0.8 × E(Al)]
Modulus of elasticity of the fibers = E(fibres) = (55 × 10⁶) psi. =
Modulus of elasticity of aluminum = E(Al) = (10 × 10⁶) psi.
But modulus of elasticity of the composite perpendicular to the fibers is given in the expression.
[1 ÷ E(perpendicular)]
= [0.2 ÷ E(fibres)] + [0.8 ÷ E(Al)]
[1 ÷ E(perpendicular)]
= [0.2 ÷ (55 × 10⁶)] + [0.8 ÷ (10 × 10⁶)]
= (3.636 × 10⁻⁹) + (8.00 × 10⁻⁸)
= (8.3636 × 10⁻⁸)
E(perpendicular) = 1 ÷ (8.3636 × 10⁻⁸)
= 11,961,722.5 psi = (11.96 × 10⁶) psi
= (12 × 10⁶) psi
Hope this Helps!!!
you will find your answer through this link
https://www.britannica.com/event/New-Deal
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.
Answer:
protected under students first amendment rights
Explanation:
did the studyisland :)
Answer:
The field gets weaker
Explanation:
I’m taking the test right now, hope this helps!!