1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laiz [17]
3 years ago
14

If Aldo puts 400 into a savings account that paid an interest rate of 5.4 percent What was the total amount in his account at th

e end of one year (total amount equals principal plus interest)
Mathematics
1 answer:
Ne4ueva [31]3 years ago
5 0

Answer:

\$421.60

Step-by-step explanation:

we know that

The simple interest formula is equal to

A=P(1+rt)

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

t=1\ year\\ P=\$400\\ A=?\\r=5.4\%=5.4/100=0.054

substitute in the formula above

A=400(1+0.054*1)

A=400(1.054)

A=\$421.60

Remember that Interest is equal to

I=A-P

I=\$421.60-\$400=\$21.60

You might be interested in
At basketball practice, charlie makes 52 baskets out of 80 shots. What percentage of baskets did he make?
Mazyrski [523]
Charlie made 65% of the baskets at practice
8 0
3 years ago
Read 2 more answers
Que números primos son mayores que -6
kumpel [21]
No sé, prueba 2,3,5,7,11,13....
Hay muchos números primos!
7 0
3 years ago
To divide 343 by 9, would you use partial quotients or the division algorithm? Explain the reasoning.
Katarina [22]
To divide 343 by 9, you will use the division algorithm.

The reason is because 343 is not divisible evenly by nine.

You know this because the sum of the digits, 3+4+3 or 10, is not evenly divisible by 9.

Therefore, 343 is not evenly divisible by 9.
7 0
4 years ago
Find the perimeter and the area of the figure.
Gwar [14]

\huge\underline{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}

<u>the </u><u>given </u><u>figure </u><u>is </u><u>a </u><u>composition</u><u> </u><u>of </u><u>a </u><u>rectangle</u><u> </u><u>as </u><u>well </u><u>as </u><u>a </u><u>right </u><u>angled </u><u>triangle </u><u>!</u>

<u>we've</u><u> </u><u>been </u><u>given </u><u>the </u><u>two </u><u>sides </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>we're</u><u> </u><u>required</u><u> </u><u>to </u><u>find </u><u>out </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>,</u><u> </u><u>so </u><u>as </u><u>to </u><u>find </u><u>it's</u><u> </u><u>area </u><u>~</u>

<u>we </u><u>know </u><u>the </u><u>the </u><u>opposite</u><u> </u><u>sides </u><u>of </u><u>a </u><u>rectangle </u><u>are </u><u>equal</u><u> </u><u>,</u><u> </u><u>therefore </u><u>we </u><u>can </u><u>break </u><u>the </u><u>longest </u><u>side </u><u>(</u><u> </u><u>length </u><u>=</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>cm </u><u>)</u><u> </u><u>into </u><u>two </u><u>parts </u><u>!</u><u> </u><u>the </u><u>first </u><u>part </u><u>of </u><u>length </u><u>=</u><u> </u><u>7</u><u> </u><u>cm </u><u>which </u><u>is </u><u>the </u><u>length </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>the </u><u>rest </u><u>2</u><u>.</u><u>5</u><u> </u><u>cm </u><u>(</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>-</u><u> </u><u>7</u><u> </u><u>=</u><u> </u><u>2</u><u>.</u><u>5</u><u> </u><u>)</u><u> </u><u>will </u><u>become </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>!</u>

<h3><u>For </u><u>perimeter</u><u> </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

perimeter \: of \: figure = perimeter \: of \: rectangle + perimeter \: of \: triangle \\  \\

now ,

<u>perimeter</u><u> </u><u>of </u><u>rectangle </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>l </u><u>+</u><u> </u><u>b </u><u>)</u>

where ,

<u>l </u><u>=</u><u> </u><u>length </u>

<u>b </u><u>=</u><u> </u><u>breadth </u>

\longrightarrow \: perimeter = 2(7 + 6) \\ \longrightarrow \: 2(13) \\ \longrightarrow \: 26 \: cm

and ,

perimeter \: of \: \triangle = 6.5 + 2.5 + 6 \\ \longrightarrow \: 15 \: cm

<u>Perimeter</u><u> </u><u>of </u><u>figure </u><u>in </u><u>total </u><u>=</u><u> </u><u>2</u><u>6</u><u> </u><u>cm </u><u>+</u><u> </u><u>1</u><u>5</u><u> </u><u>cm</u>

thus ,

\qquad\quad\bold\red{perimeter \: = \: 41 \: cm}

<h3><u>For </u><u>area </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

area \: of \: figure = area \: of \: rectangle  + area \: of \: rectangle \\

now ,

<u>area </u><u>of </u><u>rectangle</u><u> </u><u>=</u><u> </u><u>l </u><u>×</u><u> </u><u>b</u>

where ,

<u>l </u><u>=</u><u> </u><u>length </u>

<u>b </u><u>=</u><u> </u><u>breadth</u>

area \: of \: rectangle = 7 \times 6 \\ \longrightarrow \: 42 \: cm {}^{2}

and ,

area \: of\triangle =  \frac{1}{2}  \times base \times height \\  \\ \longrightarrow \:   \frac{1}{\cancel2}  \times \cancel6 \times 2.5 \\  \\ \longrightarrow \: 3 \times 2.5 \\  \\ \longrightarrow \: 7.5 \: cm {}^{2}

<u>Area </u><u>of </u><u>figure</u><u> </u><u>in </u><u>total </u><u>=</u><u> </u><u>4</u><u>2</u><u> </u><u>cm²</u><u> </u><u>+</u><u> </u><u>7</u><u>.</u><u>5</u><u> </u><u>cm²</u>

thus ,

\qquad\quad\bold\red{Area \: = \: 49.5 \: cm^{2}}

hope helpful :)

6 0
2 years ago
Read 2 more answers
the diameter of a dime is seven hundred five thousandths of an inch. what is the value of five in the diameter of a half dollar
Darina [25.2K]

We can't tell.  You've given us some very interesting information
about dimes, but told us nothing at all about half dollars.

8 0
3 years ago
Other questions:
  • You start at (3, 0). You move up 7 units. Where do you end?
    13·2 answers
  • In this subtraction, PR5T and 47Y6 represent 4-digit numbers. What number does PR5T represent?
    11·1 answer
  • Can’t figure this out help please
    7·1 answer
  • Lan scores 44out of 60 maths test.what is his score as a percentage to 1 decimal place
    9·1 answer
  • If you have a bag of 4 red and 6 blue marbles, the probability of picking a red, putting it back,then picking a blue.
    12·1 answer
  • How to convert 0.39 into a fraction?
    12·2 answers
  • If x=36 and Y=4, how many of the following are rational numbers?
    13·1 answer
  • The area of a square is A = s², where s is the length of one side of the square. What is the side length s for each square? Drag
    6·2 answers
  • 7. Find the value of x.<br> 101<br> 79<br> х<br> 63<br> 90"
    5·1 answer
  • Guys please help me
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!