1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ipatiy [6.2K]
3 years ago
8

Brad is 12 years older than Sam. If Brad were 8 years older than he is now, he would

Mathematics
1 answer:
MatroZZZ [7]3 years ago
5 0

Answer:

Sam is 20 years old.

You might be interested in
.......................................
klio [65]

Answer:

Step-by-step explanation:

d

7 0
2 years ago
87432 divided by 24 need help
Julli [10]

Answer:

3643

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the area of the triangle with the given
LekaFEV [45]

Answer:

616.2442

area to the nearest whole number=616

Step-by-step explanation:

using formula 1/2absinx

where a =44,b=29 ,x=105

1/2x44x29xsin105

44x29=1276

1276÷2=638

638 x sin 105

the sin of 105 is 0.9659

if u are using a four figure table where u can't find 105 under sin of angle

u simply subtract 105 from 180=75

638 x 0.9659 =616.2442

approx.616

6 0
3 years ago
I'm going to try this one more time...
irina [24]

Answer and Step-by-step explanation:

<u>C and D  is the answer.</u>

It needs a lot of mass so that it can collapse on itself to form a black hole, and when it dies, it also collapses on itself, forming a black hole.

A is incorrect because the mass of our sun hasn't made it to collapse, and it still has some billions of years before the mass increases.

B is incorrect because the hydrogen needs to be depleted in order for the sun/star to start the nuclear process.

<em><u>#teamtrees #PAW (Plant And Water)</u></em>

3 0
3 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
1 year ago
Other questions:
  • Which choice shows a correct way to find 6 × 3 × 5?
    12·2 answers
  • How many minutes will it take to travel 2.5 miles if you are walking at 3.7 miles per hour?
    5·1 answer
  • What is m CGD = 4x + 2, m DGE = 3x - 5, m EGF = 2x + 10
    9·2 answers
  • 20 x 10 3 but the 3 is small please i need this ...
    8·2 answers
  • A table is made using the following two patterns.
    6·1 answer
  • Least common multiple (LCM) of 4 and 14.
    9·2 answers
  • Solve algebraically for x and explain each step( using mathematical vocbuary) for the following: 2(x+5)+ 3x = 30
    8·1 answer
  • Can someone pleasw helppppppp meee
    12·2 answers
  • A company uses paper cups shaped like cones for its water cooler. Each cup has a height of 10cm, and the base has a radius of 4.
    8·1 answer
  • Look at the picture pls don't answer in pictures
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!