<h2>1 N2+ 1 O2 are two N atoms and two O atoms.</h2><h3>In NO, there is one N and one O atom.</h3>
For both sides to be the same, there have to be 2 NO molecules, as 2 NO molecules contain 2 N atoms and 2 O atoms, just like starting products of the reaction.
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Answer is: because pure liquids (<span>shown in </span>chemical reactions<span> by appending (</span>l)<span> to the </span>chemical formula) and solids (<span>shown in </span>chemical equations by appending (s)<span> to the </span>chemical formula) not go in to he equilibrium constant expression, only gas state (shown in chemical reactions by appending (g) to the chemical formula) reactants and products go in to he equilibrium constant expression. For example, equilibrium constant expression Kp for reaction: A(s) + 2B(s) ⇄ 4C(g) + D(g).<span>
will be: Kp = [C]</span>⁴<span>·[D]. But for reaction </span>A(g) + 2B(g) ⇄ 4C(g) + D(g), will be:<span>
Kp = [C]</span>⁴<span>·[D] / [A]·[B]².</span>