<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
You have to use Dalton's law of partial pressure for this question. Dalton's law of partial pressure basically states that the total pressure of the system is all of the partial pressures of the components added together. Therefore to answer the question you just need to add all the patial pressures together meaning that the total pressure would be 700+500+500=1700.
The answer would be 1700 torr.
I hope this helps. Let me know if anything is unclear or if you have any further questions.
4C₃H₅(NO₃)₃
------> 12CO₂
+ 6N₂
+ 10H₂O
+ O₂
mol of CO₂ = 
= 
mol ratio of CO₂ : C₃H₅(NO₃)₃
12 : 4
∴ if mole of CO₂ = 0.568 mol
then " " C₃H₅(NO₃)₃ = 
= 0.189 mol
∴ mass of nitroglycerin = mole * Mr
= 0.189 mol * 227.0995 g / mol
= 43.00 g
Despite its appearance, air has a ‘thickness’ so when the sun is high in the sky the light travels through the air on a very much shorter path than when it is low on the horizon.
Imagine that air water and you are below the surface, the light from an overhead sun will be quite sharp and bright, but if lower in the sky it will have to travel through much more water to reach you, so will look less bright and sharp. It ma not seem the same, but the atmosphere is just like very thin water, and a low lying sun will be drastically reduced in strength, so all you will see is a sun with a shift to the red end of the spectrum as all the actinic part will be filtered away by that thicker atmosphere.