y - 3
g(y) = ------------------
y^2 - 3y + 9
To find the c. v., we must differentiate this function g(y) and set the derivative equal to zero:
(y^2 - 3y + 9)(1) - (y - 3)(2y - 3)
g '(y) = --------------------------------------------
(y^2 - 3y + 9)^2
Note carefully: The denom. has no real roots, so division by zero is not going to be an issue here.
Simplifying the denominator of the derivative,
(y^2 - 3y + 9)(1) - (y - 3)(2y - 3) => y^2 - 3y + 9 - [2y^2 - 3y - 6y + 9], or
-y^2 + 6y
Setting this result = to 0 produces the equation y(-y + 6) = 0, so
y = 0 and y = 6. These are your critical values. You may or may not have max or min at one or the other.
I’m pretty sure- B) counterclockwise rotation
-
-
If you look at the graph of sin(n), you can notice that it oscillates every kpi/2 when k is odd. This oscillation proves that sin(n) diverges.
Answer: $105
Step-by-step explanation:
Answer:
Step-by-step explanation:
Value of x should be less than (-6).
x = { .......,-9,-8,-7}
For example:
-15*-7 +80 = 105+80 = 185 >170