Answer:
5.865 μs
Explanation:
t₀ = Time taken to decay a muon = 2.20 μs
c = Speed of Light in vacuum = 3×10⁸ m/s
v = Velocity of muon = 0.927 c
t = Lifetime observed
Time dilation

∴Lifetime observed for muons approaching at 0.927 the speed of light is 5.865 μs
Answer:
As the planets are very small and dark in comparison with stars, it makes them very hard to be found from earth.
Explanation:
Astronomy, of course, has a solution for this. As astronomers can't observe planets directly, they decided to observe the stars and search for the effects that planets have on them.
There are many ways of observing the exoplanets: Radial Velocity, Transit Photometry, Microlensing, Astrometry, Direct Imaging, etc.
Before all of this, scientist had to find ways to prove their theories. Most of their time they have spent in giving the creative answers.
Science and creativity are very much connected when we speak about the development of science. Rationality and creativity always go together.
In order to create an idea that other people will consider useful, it is important to use creativity. As no one has the exact answer when it comes to science, the adventure is to research the unknown.
Answer:
An elastic collision is a collision in which there is no net loss in kinetic energy in the system as a result of the collision. Both momentum and kinetic energy are conserved quantities inelastic collisions.
Explanation:
Suppose two similar trolleys are traveling toward each other with equal speed. They collide, bouncing off each other with no loss in speed. This collision is perfectly elastic because no energy has been lost. In reality, examples of perfectly elastic collisions are not part of our everyday experience. Some collisions between atoms in gases are examples of perfectly elastic collisions. However, there are some examples of collisions in mechanics where the energy lost can be negligible. These collisions can be considered elastic, even though they are not perfectly elastic. Collisions of rigid billiard balls or the balls in Newton's cradle are two such examples.
Answer:
0.544 eV
Explanation:
To ionize the hydrogen atom 
So the required energy is
as
So 
We have to calculate the energy required to ionize hydrogen atom when it is in n=5
So the energy should be less than 
Salt is made up of sodium and chloride and is ionically bonded. Sugar, on the other hand, is composed of carbon, oxygen, and hydrogen and has covalent bonds. A salt molecule is made up of one sodium atom and one chlorine atom. For salt to be made, the sodium atom must lose an electron and become a sodium ion.