Answer:
Explanation:
Using second degree taylor polynomials
let
be position function and set 
where S(0) is the initial position
Then
and 
we have
, 
so 
b.) yes
Answer:
One of the basic principles of chemistry is the electrostatic attraction between atoms or compounds. Electrons are on the outside of an atoms and that's where the charges come from and the interaction between those charges is what happens during a chemical bond. Therefore the answer would be electrons.
Answer:
(a) Ratio of mean density is 0.735
(b) Value of g on mars 0.920 
(c) Escape velocity on earth is 
Explanation:
We have given radius of mars
and radius of earth 
Mass of earth 
So mass of mars 
Volume of mars 
So density of mars 
Volume of earth 
So density of earth 
(A) So the ratio of mean density 
(B) Value of g on mars
g is given by 
(c) Escape velocity is given by

Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m