F = ma
Rearrange this so acceleration is the subject:
A = f/m
Now input your values into this equation for the first question :
A = f/m
A = 15/45
A = 0.33333333 m/s
Then using this same equation change the force of 15 to 25 :
A = f/m
A = 25/45
A = 0.55555556 m/s
For the last question keep the force of 15N but change the mass to 70kg into the same equation :
A = f/m
A = 15/70
A = 0.21 m/s (rounded)
T = 3 h = 3 x 3600s = 10800s
d = 100 x 10800 = 1080000km to The east.
Answer:
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull.
Answer:
a) K_e = 0.1225 J, b) U = 1.96 J, c) v = 0.99 m / s
Explanation:
Let's use the simple harmonium movement expression
y = A cos (wt + Ф)
indicate that the amplitude is
A = 0.05 m
as the system is released, the velocity at the initial point is zero
v = dy / dt
v = - A w sin (wt + Ф)
for t = 0 s and v = 0 m/s
0 = - A w sin Ф
so Ф = 0
the expression of the movement is
y = 0.05 cos wt
The total energy of the system is
Em = ½ k A²
let's use conservation of energy
starting point. Spring if we stretch and we set the zero of our system at this point
Em₀ = K_e + U
Em₀ = 0
final point. When weight and elastic force are in balance
Em_f = K_e + U
Em_f = ½ k y² + m g (-y)
energy is conserved
Em₀ = Em_f
0 = ½ k y² + m g (-y)
k = 2mg / y
k = 2 4.00 9.8 / 0.050
k = 98 N / m
a) maximum elastic energy
K_e = ½ k A²
K_e = ½ 98 0.05²
K_e = 0.1225 J
b) the maximum gravitational energy
U = m g y
U = 4.00 9.8 0.05
U = 1.96 J
c) The maximum kinetic energy occurs when the spring is not stretched
U = K
mg h = ½ m v²
v = √2gh
v = √( 2 9.8 0.05)
v = 0.99 m / s
d) energy at any point
Em = K + U