1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lora16 [44]
2 years ago
13

Explanation: One can pick up a nail using the curved part of the horseshoe magnet farthest from the poles. A horse shoe magnet h

as magnetic fields all around it. In the presence of magnetic force fields, any magnetic object will be attracted to it.
Physics
1 answer:
PIT_PIT [208]2 years ago
4 0

Answer:

is there anymore choices than A

You might be interested in
Which law states that that the direction of the induced current is such that the magnetic field resulting from the induced curre
Vikentia [17]

Lenz's law or option B for plato users

6 0
3 years ago
Read 2 more answers
NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA
kkurt [141]

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

6 0
3 years ago
Fill in the appropriate values for each blank as it refers to ATOM 1. The number of protons present in ATOM 1 is _________.​
wlad13 [49]
3, protons are positive and there are 3 positive atoms visible
6 0
3 years ago
What does activation energy has to do with a chemical reaction.
asambeis [7]

Explanation:

Activation energy and reaction rate

The activation energy of a chemical reaction is closely related to its rate. Specifically, the higher the activation energy, the slower the chemical reaction will be. ... The released energy helps other fuel molecules get over the energy barrier as well, leading to a chain reaction.

6 0
3 years ago
Help with the two questions above? Correct answers?
LenKa [72]

(6) first choice: the frequency appears higher and wavelength is shorter.

The car approaches a stationary observer and so the sound will appear to have shorter wavelength. This creates an effect of its siren to sound with higher frequency than it would do if both were stationary.

(7) The Doppler formula for frequency in the case of a stationary observer and source approaching it is as follows:

f_O = \frac{v}{v-v_s}\cdot f= \frac{343\frac{m}{s}}{(343-25)\frac{m}{s}}\cdot 400Hz \approx 431Hz

The wavelength is then

\lambda = \frac{343\frac{m}{s}}{431Hz}\approx 0.80 m

The third choice "0.80m; 431Hz" is correct

7 0
3 years ago
Other questions:
  • Figure 1.18 (Chapter 1) shows the Hoover Dam Bridge over
    8·1 answer
  • A shuffleboard disk is accelerated to a speed of 5.8 m/s and released. If the coefficient of kinetic friction between the disk a
    15·1 answer
  • What is the average velocity of atoms in 1.00 mol of neon (a monatomic gas) at 288k?
    10·1 answer
  • Jayne lifts the barbell 120 cm upwards. She has a mass of 60kg. How much work does she do?
    7·1 answer
  • Conservation of momentum
    6·1 answer
  • What is the independent variable in the graph?
    14·1 answer
  • (a) Find the speed of waves on a violin string of mass 717 mg and length 24.3 cm if the fundamental frequency is 980 Hz. (b) Wha
    11·1 answer
  • Which of the following is not a requirement of a practical fuel? A. It must occur in abundance in nature or be easy to produce.
    14·1 answer
  • What is air masses? And 5 effect of it​
    14·1 answer
  • Which of the following is a Nobel gas?<br> Ba2+<br> OA<br> OB. Ci<br> Kr<br> Ос.<br> Ca<br> D.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!