The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer:
176,000 N
Explanation:
Newton's second law:
∑F = ma
F = (4 × 40,000 kg) (1.1 m/s²)
F = 176,000 N
Density is defined as (mass) per unit (volume). So in order to calculate
the density of a glob of some substance, you pretty much have to measure
its mass and its volume.
From the law of conservation of momentum
m1u1+ m2u2= m1v1+ m2v2
110*8+ 110*-10= 110*-10 + 110* v2
v2= 8 m/sec
Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K