The kinetic energy of the phone right before it hits the ground is 9J.
<h3>
Kinetic energy of the phone</h3>
The kinetic energy of the phone right before it hits the ground is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of the phone
- v is velocity of the phone
K.E = ¹/₂(0.08)(15)²
K.E = 9 J
Thus, the kinetic energy of the phone right before it hits the ground is 9J.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.
electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>
Answer:
theres only 118 elements that are discovered. now that they're the only ones out there
Explanation:
Answer:
A) 10 m/s
Explanation:
We know that according to conservation of momentum,
m1v1 + m2v2 = m1u1 + m2u2 ..............(equation 1)
where m1 and m2 are masses of two bodies, v1 and v2 are initial velocity before collision and u1 and u2 are final velocities after collision respectively.
From the given data
If truck and car are two bodies
truck : m1 = 2000 Kg v1 = 5 m/s u1 = 0
car : m2 = 1000 kg v2 = 0 u2 = ?
final velocity of truck and initial velocity of car are static because the objects were at rest in the respective time.
substituting the values in equation 1, we get
(2000 x 5) + 0 = 0 + (1000 x u2)
u2 =
x 5
= 10 m/s
Hence after collision, car moves at a velocity of 10 m/s
Answer:
The value of new coulomb force is 1.43 N.
Explanation:
Given;
Coulomb's force in vacuum (air),
= 10 N
dielectric constant, K = 7
The Coulomb's force between two charges separated by a distance r in a vacuum is given as;

The Coulomb's force between two charges separated by a distance r in a medium with dielectric constant is given as

Take the ratio of the two forces;

Therefore, the value of new coulomb force is 1.43 N.