Answer
given,
Side of copper plate, L = 55 cm
Electric field, E = 82 kN/C
a) Charge density,σ = ?
using expression of charge density
σ = E x ε₀
ε₀ is Permittivity of free space = 8.85 x 10⁻¹² C²/Nm²
now,
σ = 82 x 10³ x 8.85 x 10⁻¹²
σ = 725.7 x 10⁻⁹ C/m²
σ = 725.7 nC/m²
change density on the plates are 725.7 nC/m² and -725.7 nC/m²
b) Total change on each faces
Q = σ A
Q = 725.7 x 10⁻⁹ x 0.55²
Q = 219.52 nC
Hence, charges on the faces of the plate are 219.52 nC and -219.52 nC
Answer:
Melt.
Explanation:
When rocks melt, they do so slowly and gradually because most rocks are made of several minerals, which all have different melting points; moreover, the physical and chemical relationships controlling the melting are complex. As a rock melts, for example, its volume changes. When enough rock is melted, the small globules of melt link up and soften the rock.
Under normal conditions, mantle rock like peridotite shouldn't melt in the Earth's upper mantle. However, by adding water you can lower the melting point of the rock. Alternatively, by decompressing the rock, you can bring it to a pressure where the melting point is lower. In both cases, basalt magma will form and considering it is hotter and less dense than the surrounding rock, it will percolate towards the surface and some of that erupts.
Answer:
T = 0.225 s
Explanation:
The speed of a projectile at the highest point of its motion is the horizontal speed of the projectile. Considering the horizontal motion with negligible air resistance, we can use the following formula:

where,
T = Total time of ball in air = ?
R = Horizontal distance covered = 40 m
= horizontal speed = 9 m/s
Therefore,

<u>T = 0.225 s</u>
The Archimedes principle is a principle that is expressed as a law that states that a body immersed in a fluid, whether fully or partially, is subject to an upward force of the same magnitude as the weight of the fluid it displaces.
<em>Hope this helps :)</em>
Assuming the accleration applied was constant, we have



Then the force applied to the ball is given by

