That would be 3.621471•10^3
Answer:
10425 J are required
Explanation:
assuming that the water is entirely at liquid state at the beginning , the amount required is
Q= m*c*(T final - T initial)
where
m= mass of water = 25 g
T final = final temperature of water = 100°C
T initial= initial temperature of water = 0°C
c= specific heat capacities of water = 1 cal /g°C= 4.186 J/g°C ( we assume that is constant during the entire temperature range)
Q= heat required
therefore
Q= m*c*(T final - T initial)= 25 g * 4.186 J/g°C * (100°C- 0°C) = 10425 J
thus 10425 J are required
Answer: Option (C) is the correct answer.
Explanation:
Solid and liquid are the states of matter. Plasma is also a state of matter where a number of electrons move freely around the nucleus of an atom.
Whereas water is a liquid itself and liquid is a state of matter but water is not a state of matter.
Therefore, we can conclude that water is not a state of matter.