The total pressure of the system is equivalent to the sum of all the pressure of the individual gases. The total pressure of the flask is 2.37 atm.
<h3>What is total pressure?</h3>
According to Dalton's law, the total pressure of the system will be equivalent to the total of the pressures exerted by the individual gases present in the system.
The total pressure of gases is given as,
Given,
- The pressure of argon gas = 0.72 atm
- The pressure of oxygen = 1.65 atm
- Total pressure = P
Substituting values in the above equation:
Therefore, 2.37 atm is the total pressure of the flask.
Learn more about total pressure here:
brainly.com/question/11150092
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:
The mass of hydrogen atoms that is measured at 54 u given the relationship is 89.64×10¯²⁴ g
<h3>Conversion scale </h3>
1 u = 1.66×10¯²⁴ g
<h3>How to determine the mass of hydrogen atoms </h3>
- Mass of Hydrogen (u) = 54 u
- Mass of Hydrogen (g) =?
1 u = 1.66×10¯²⁴ g
Therefore
54 u = 54 × 1.66×10¯²⁴ g
54 u = 89.64×10¯²⁴ g
Thus, the mass of the hydrogen atoms measured at 54 u is 89.64×10¯²⁴ g
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
Answer:
must have the same number of protons