A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
<h3>What is One Calorie ?</h3>
The amount of heat energy required to raise the temperature by 1 gram of water through 1°C is known as One Calorie.
1 Calorie = 4.18 J
Thus from the above conclusion we can say that A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
Learn more about the One calorie here: brainly.com/question/1061571
#SPJ4
Answer:
nobmelonisegxfixcyctGkchkcigdtidtifyoc
In the first 85.0 s of this reaction, the concentration of no dropped from 1.12 m to 0.520 m .
What is rate of a reaction?
The speed at which a chemical reaction takes place is the rate of the reaction. It is the concentration change per unit time of a reactant in a reaction.
Since the concentration of NO reduces to half its initial concentration in 85 seconds that is from 1.12m to 0.520m, it can be said that 85 seconds is the half life interval for the reaction, <u>Hence on average, </u><u>half reaction</u><u> is completed in the time interval of </u><u>85 seconds</u><u>.</u>
To learn more about rate of a reaction from the given link below,
brainly.com/question/12172706
#SPJ4
Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol
Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>