Gold is actually very soft. If rings were made of pure gold they would bend and become disfigured. Other elements are added to give the ring its stability.
We know that each millimeter contains 10⁻³ meters. Writing this as a ratio:
1 mm : 10⁻³ m
We require a conversion from m³ to mm³, so we must take the cube of the ratio we have made:
1 mm³ = (10⁻³)³ m³
Therefore, the conversion used will be:
(1 mm / 10⁻³ m)³
When we multiply by this conversion, we will get:
32 m³ = 32 x 10⁹ mm³
Answer:
i am not sure but its 2 ican"t qry
Explanation:
Answer:
63.25 grams of CO₂
Explanation:
To convert from liters to grams, we first need to convert from liters to moles. To do this, we divide the liters by 22.4, the amount of liters of a gas per mole.
32.2 / 22.4
= 1.4375 moles of CO₂
Now we want to convert from moles to grams. To do this, we multiply the moles by the molar mass of CO₂. The total molar mass can be found on the periodic table by adding up the molar mass of carbon (12) and two oxygen (32).
12 + 32 = 44
Now we want to multiply the moles by the molar mass.
1.4375 • 44
= 63.25 grams of CO₂
This is your answer.
Hope this helps!
For this problem we use the wave equation. It is expressed as the speed (c) is equal to the product of frequency (f) and wavelength (v).
c = v x f
We know the wavelength of the an red light which is 6.5 x 10^-7 m. Now, we solve for the wavelength of the unknown wave to see the relation between the two waves.
2.998 X 10^8 = 5.3 X 10^15 X v
v = 2.998 X 10^8 / (5.3 X 10^15) = 5.657 X 10^-8 m
Therefore, the wavelength of the unknown wave is less than the wavelength of the red light.