1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
6

Ok i bet none of you guys/girls can get this right there's three states of matter solid

Physics
1 answer:
Bas_tet [7]3 years ago
7 0

Answer:

plasma is the 4th state

You might be interested in
What is the magnitude of the torque about his shoulder due to the weight of the ball and his arm if he holds his arm straight ou
Lubov Fominskaja [6]

Answer:

The torque about his shoulder is 34.3Nm.

The solution approach assumes that the weight of the boy's arm acts at the center of the boy's arm length 35cm from the shoulder.

Explanation:

The solution to the problem can be found in the attachment below.

6 0
3 years ago
How does kinetic energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling at
Maru [420]
Well you of course have different kinetic energies with the two speeds.
Kinetic energy = (1/2)*mass*velocity^2
The vehicle's mass is the same in both cases, so we can ignore that as well as 1/2 since it's a constant.
So we have (30)^2 vs (60^2)
which is 900 vs 3600
So having 60 mph compared to 30 mph is 4 times the kinetic energy.
5 0
3 years ago
Two 22.7 kg ice sleds initially at rest, are placed a short distance apart, one directly behind the other, as shown in Fig. 1. A
boyakko [2]

Newton's third law of motion sates that force is directly proportional to the rate of change of momentum produced

(a) The final speeds of the ice sleds is approximately 0.49 m/s each

(b) The impulse on the cat is 11.0715 kg·m/s

(c) The average force on the right sled is 922.625 N

The reason for arriving at the above values is as follows:

The given parameters are;

The masses of the two ice sleds, m₁ = m₂ = 22.7 kg

The initial speed of the ice, v₁ = v₂ = 0

The mass of the cat, m₃ = 3.63 kg

The initial speed of the cat, v₃ = 0

The horizontal speed of the cat, v₃ = 3.05 m/s

(a) The required parameter:

The final speed of the two sleds

For the first jump to the right, we have;

By the law of conservation of momentum

Initial momentum = Final momentum

∴ m₁ × v₁ + m₃ × v₃ = m₁ × v₁' + m₃ × v₃'

Where;

v₁' = The final velocity of the ice sled on the left

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₁' + 3.63 × 3.05

∴  22.7 × v₁'  = -3.63 × 3.05

v₁' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the left, v₁' ≈ -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

For the second jump to the left, we have;

By conservation of momentum law,  m₂ × v₂ + m₃ × v₃ = m₂ × v₂' + m₃ × v₃'

Where;

v₂' = The final velocity of the ice sled on the right

v₃' = The final velocity of the cat

Plugging in the values gives;

22.7 kg × 0 + 3.63 × 0 = 22.7 × v₂' + 3.63 × 3.05

∴  22.7 × v₂'  = -3.63 × 3.05

v₂' =  -3.63 × 3.05/22.7 ≈ -0.49

The final velocity of the ice sled on the right = -0.49 m/s (opposite to the direction to the motion of the cat)

The final speed ≈ 0.49 m/s

(b) The required parameter;

The impulse of the force

The impulse on the cat = Mass of the cat × Change in velocity

The change in velocity, Δv = Initial velocity - Final velocity

Where;

The initial velocity = The velocity of the cat before it lands = 3.05 m/s

The final velocity = The velocity of the cat after coming to rest =

∴ Δv = 3.05 m/s - 0 = 3.05 m/s

The impulse on the cat = 3.63 kg × 3.05 m/s = 11.0715 kg·m/s

(c) The required information

The average velocity

Impulse = F_{average} × Δt

Where;

Δt = The time of collision = The time it takes the cat to finish landing = 12 ms

12 ms = 12/1000 s = 0.012 s

We get;

F_{average} = \mathbf{\dfrac{Impulse}{\Delta \ t}}

∴ F_{average} = \dfrac{11.0715 \ kg \cdot m/s}{0.012 \ s}  = 922.625 \ kg\cdot m/s^2 = 922.625 \ N  

The average force on the right sled applied by the cat while landing, \mathbf{F_{average}} = 922.625 N

Learn more about conservation of momentum here:

brainly.com/question/7538238

brainly.com/question/20568685

brainly.com/question/22257327

8 0
2 years ago
Andrea was watching her brother in the ocean and noticed that the waves were coming into the beach at a frequency of 0.777778 Hz
Stolb23 [73]
8 wave units I guess I tried it should be the answer though
3 0
3 years ago
Una mujer de masa m está parada en el borde de una mesa giratoria horizontal de momento de inercia I y radio R. La mesa al princ
Dovator [93]

r

- \frac{mR^2 }{I  } \ vAnswer:

a)      w = - \frac{m r }{I} v  ,  b)   W = - ½ m_woman R² (1 + m_woman R / I²) v²

Explanation:

a) To solve this exercise, let's use the conservation of angular momentum.

We define a system formed by the table and the woman, therefore the torques are internal and the moment is conserved

initial instant. Before starting to move the woman

         L₀ = 0

final instant. After starting to move

         L_f = I w + m v r

the moment is preserved

        L₀ = L_f

         0 = Iw + m v r

         w = - \frac{m r }{I} v                    (1)

the direction of the angular velocity is opposite to the direction of the linear velocity, that is, counterclockwise

b) for this part we use the relationship between work and kinetic energy

        W = ΔK

in this case the initial speed is zero and the final speed of the table, using the relationship between linear and angular variables

         v = w r

we substitute

          W = 0 - ½ I_total w²

          I_total = I + m_{woman} R²

          W = - ½ (I + m_woman R²)  ( \frac{m_{woman} R}{I} \ v) ²

          W = - ½ (m_woman² R² + m_woman³ R³ / I²) v²

          W = - ½ m_woman R² (1 + m_woman R / I²) v²

3 0
3 years ago
Other questions:
  • Which best describes how geothermal energy is used to make electricity?. . A.. Rocks are split to release energy that drives a s
    12·1 answer
  • Why is it important to have a balance of gases in the atmosphere?
    5·1 answer
  • What is one way radiation is used that is beneficial for our health?
    9·1 answer
  • Assume that our computer stores decimal numbers using 16 bits - 10 bits for a sign/magnitude mantissa and 6 bits for a sign/magn
    5·1 answer
  • According to the kinetic theory, collisions between molecules in a gas _____.a.are inelasticb.never occurc. cause a loss of tota
    6·1 answer
  • if you have a mass of 55 kg and you are standing 3 meters away from your car, which has a mass of 1234 kg, how strong is the for
    10·1 answer
  • _________ on a body is produced by the gravitational force of attraction​
    7·1 answer
  • Considerando la luz como una onda, si un rayo de luz láser pasa del aire a un vidrio transparente, ¿Cuál de las siguientes carac
    9·1 answer
  • Se aplica una fuerza de 8N a un cochecito de 650 gramos. Calcula: a) aceleración, b)espacio recorrido en 5 segundos y c) velocid
    5·1 answer
  • To lower the risk of a collision, you should keep at least __________ of space to one side of your vehicle at all times.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!