1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
3 years ago
10

How far away from the earth is the sun?

Physics
2 answers:
sammy [17]3 years ago
6 0

Answer:

91.433 million miles

Explanation:

the distance from earth to the sun is called astromical unit, or AU, which is used to measure distance throughout the solar system. so the earth and the sun are 91.433 million miles apart

nikitadnepr [17]3 years ago
4 0
It is about 91.433 miles away
You might be interested in
Two billion people jump up in the air at the same time with an average velocity of 7.0 m/sec. If the mass of
maria [59]
P=m x v =60 x 7.0= 420
total momentum = 420 x 2,000,000,000=dnt have a calculator
thier effect would shake the earth and kill some organism because they jump up at the same time and they wil probably land the same time .
8 0
3 years ago
Read 2 more answers
What is the net work doneon the object over the distance shown?
GuDViN [60]

A)F_0d

Explanation

If you graph the force on an object as a function of the position of that object, then the area under the curve will equal the work done on that object, so we need to find the area under the function to find the work

Step 1

find the area under the function.

so

Area:

\text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red}\begin{gathered} \text{the area of a rectangle is given by} \\ A_{rec}=lenght\cdot widht \\ \text{and} \\ \text{the area of a triangle is given by:} \\ A_{tr}=\frac{base\cdot height}{2} \end{gathered}

so

\begin{gathered} \text{Area}=rec\tan gle_{green}+triangle_{gren}-triangle_{red} \\ \text{replace} \\ \text{Area}=(F_0\cdot d)+\frac{(F_0\cdot d)}{2}-\frac{(F_0\cdot d)}{2} \\ \text{Area}=(F_0\cdot d) \\ Area=F_0d \end{gathered}

therefore, the answer is

A)F_0d

I hope this helps you

4 0
1 year ago
Calculate the average orbital speed of Ceres in
marin [14]
] Ceres is composed of rock and ice and is estimated to comprise approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, peaking once every 15 to 16 months,[21]hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies.
8 0
3 years ago
Diffusion and osmosis are forms of passive transport.<br><br> True<br> False
pishuonlain [190]

Answer:

True. Diffusion and osmosis are forms of passive transport.

Explanation:

In diffusion, particles move from an area of higher concentration to one of lower concentration until equilibrium is reached.

In osmosis, a semipermeable membrane is present, so only the solvent molecules are free to move to equalize concentration.

8 0
3 years ago
Read 2 more answers
In 1610, galileo used his telescope to discover four prominent moons around jupiter. their mean orbital radii a and periods t ar
katrin2010 [14]

Time period of any moon of Jupiter is given by

T = 2\pi \sqrt{\frac{r^3}{GM}}

from above formula we can say that mass of Jupiter is given by

M = \frac{4 \pi^2 r^3}{GT^2}

now for part a)

r = 4.22 * 10^8 m

T = 1.77 day = 152928 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (4.22 * 10^8)^3}{(6.67 * 10^{-11})(152928)^2}

M = 1.9* 10^{27} kg

Part B)

r = 6.71 * 10^8 m

T = 3.55 day = 306720 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (6.71 * 10^8)^3}{(6.67 * 10^{-11})(306720)^2}

M = 1.9* 10^{27} kg

Part c)

r = 10.7 * 10^8 m

T = 7.16 day = 618624 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (10.7 * 10^8)^3}{(6.67 * 10^{-11})(618624)^2}

M = 1.89* 10^{27} kg

PART D)

r = 18.8 * 10^8 m

T = 16.7 day = 1442880 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (18.8 * 10^8)^3}{(6.67 * 10^{-11})(1442880)^2}

M = 1.889* 10^{27} kg

6 0
3 years ago
Other questions:
  • The lowest pitched sounds humans can generally hear have a frequency of roughly 20hz. what is the approximate wavelength of thes
    9·1 answer
  • an ideal gas is confined to a container with adjustable volume. the number of moles, n, and temperature, t, are constant. by wha
    10·1 answer
  • HELP ASAP PLEASE NEED HELP
    7·2 answers
  • Any material that allows thermal energy to pass through easily is a?
    5·1 answer
  • By which method does the following move into the cell: movement of oxygen, carbon dioxide, and other small uncharged molecules a
    9·1 answer
  • A way to charge insulators and conductors (the answer in 7 alphabets)
    11·1 answer
  • A submarine dives to a depth of 100-m beneath the surface of the Pacific Ocean. The density of sea water is 1030 kg/m3. The subm
    13·1 answer
  • A hand pump is being used to inflate a bicycle tire that has a gauge pressure of 41.0 lb/in2. If the pump is a cylinder of lengt
    5·1 answer
  • What happens to the water when you throw rock into a pond
    10·2 answers
  • Convert 0.0779 kg to g
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!