Answer:
A
Step-by-step explanation:
Recall that for a quadratic equation of the form:
The number of solutions it has can be determined using its discriminant:

Where:
- If the discriminant is positive, we have two real solutions.
- If the discriminant is negative, we have no real solutions.
- And if the discriminant is zero, we have exactly one solution.
We have the equation:

Thus, <em>a</em> = 2, <em>b</em> = 5, and <em>c</em> = -<em>k</em>.
In order for the equation to have exactly one distinct solution, the discriminant must equal zero. Hence:

Substitute:

Solve for <em>k</em>. Simplify:

Solve:

Thus, our answer is indeed A.
Answer:
I solved part a
To solve this question, we need to solve an exponential equation, which we do applying the natural logarithm to both sides of the equation, getting that it will take 7.6 years for for 21 of the trees to become infected.
PART C
The logarithmic model is: g(x)= in x/0.4
We are given an exponential function, for the amount of infected trees f(x) after x years.To find the amount years needed for the number of infected trees to reach x, we find the inverse function, applying the natural logarithm.
Step-by-step explanation:
mark me brainliest!!
It does, as there is a linear increase with a slope.
Answer: it is the x multiplied by the y axis
Step-by-step explanation:
Answer:
9.6
Step-by-step explanation:
When we are adding decimals we try 2 add them like normal integers, but in the end we add the decimal in the same place as it was in the beginning
so 62+34=96 and there's a decimal in the tenths place so its 9.6