Answer:
Explanation:
When we are driving we need a lot of attention and concentration. Also one involved in driving should be consious and courteous
Thus, whenever a person is drives, and when he is disactracted by Mobile phones it will destroy his presence of mind.
It will good if use mobile after stopping the vehicle
Thanks
Answer:
The focal length of the lens in ethyl alcohol is 41.07 cm.
Explanation:
Given that,
Refractive index of glass= 1.500
Refractive index of air= 1.000
Refractive index of ethyl alcohol = 1.360
Focal length = 11.5 cm
We need to calculate the focal length of the lens in ethyl alcohol
Using formula of focal length for glass air system

Using formula of focal length for glass ethyl alcohol system

Divided equation (II) by (I)

Where,
= refractive index of glass
= refractive index of air
= refractive index of ethyl
Put the value into the formula




Hence, The focal length of the lens in ethyl alcohol is 41.07 cm.
The horizontal change between two points on a graph is called the 'run'.
The vertical change between two points is called the 'rise'.
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s