Answer:

Explanation:
Given that :
mass of the SUV is = 2140 kg
moment of inertia about G , i.e
= 875 kg.m²
We know from the conservation of angular momentum that:

![mv_1 *0.765 = [I+m(0.765^2+0.895^2)] \omega_2](https://tex.z-dn.net/?f=mv_1%20%2A0.765%20%3D%20%5BI%2Bm%280.765%5E2%2B0.895%5E2%29%5D%20%5Comega_2)
![2140v_1*0.765 = [875+2140(0.765^2+0.895^2)] \omega_2](https://tex.z-dn.net/?f=2140v_1%2A0.765%20%3D%20%5B875%2B2140%280.765%5E2%2B0.895%5E2%29%5D%20%5Comega_2)



From the conservation of energy as well;we have :

^2 -2140(9.81)[\sqrt{0.76^2+0.895^2} -0.765]] =0](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%5B875%2B2140%280.765%5E2%2B0.895%5E2%29%5D%280.4262%20%5C%20v_1%29%5E2%20-2140%289.81%29%5B%5Csqrt%7B0.76%5E2%2B0.895%5E2%7D%20-0.765%5D%5D%20%3D0)






Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
the action and reaction do not lead equilibrium if action and reaction force react on different objects
<span>The atom becomes positively charged.
When you add electrons to a neutral atom, it is no longer a neutral atom, it has a negative change and is an anion. When you take away electrons from a neutral atom, it is no longer a neutral atom- it becomes a positive atom, and is a cation.</span>
Answer:
Catapult on the ground: Normal, gravity
Catapult (I'm assuming launching marshmallow): Reaction of Force Applied
Marshmallow: Force Applied
Explanation:
This is the forces that act on a stationary object and a launched object. The catapult may also experience a force friction if your teacher is taking a more practical sense.