Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
Answer:
the branch of science concerned with the nature and properties of matter and energy
In a series circuit the total current is the same throughout resistors and so:

The voltage is distributed throughout the resistors and so:

and the total resistance can be calculated by adding up the resistors resistance:

First thing is to calculate the total resistance and so:

And by Omh's law V=IR we have:

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.
Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:

Answer:
The answer is 4 pounds
Explanation:
The explanation is that 1 kilogram is equal to 2 pounds so multiply the kilogram with the 1 pound