Answer:
The correct option is
a. v = 
Explanation:
Time at which the object start fall t = 0
The acceleration a is given by a = g - bV
Where V = Speed of the object
Speed V² = u² + 2·a·h
However with the drag force the object will approach terminal velocity as t becomes progressively larger whereby v will stop increasing
Option a. is the only option that has limiting value of v which is in the range of g as t increases ∴ option a. is the correct option.
v =
as t increases
→ 1 s and v→ g/b m/s
<u>The question does not provide enough information to complete the answer, so I'll assume the needed data to help you to solve your own problem</u>
Answer:
<em>The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile</em>
Explanation:
<u>Kinetic Energy
</u>
Is the capacity of a body to do work due to its speed and is computed by

We are not given enough data to compare the kinetic energy of the fly with that of the automobile. We'll assume the following characteristics:


So its kinetic energy is


The mass of the fly is

To have the same kinetic as the automobile:

Solving for 



The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile
Answer:
A. There is a localization of positive charge near the door handle.
Explanation:
- When on a cold morning a person wearing cotton/ polyester cloth walking on the carpet moves toward his car then due to friction between the feet and the carpet there are transfer of electrons from the carpet to our feet, and since our body is a good conductor of electricity the charges spread throughout on the surface of or body.
- When the person brings his hands close to the neutral conducting door of the car it gets induced with equal intensity of opposite charge to our hands thus having a concentration of positive charges near to the hand on the car's door is developed as a result of polarization within the conductor.
Answer:
The answer is 
Explanation:
The amount of energy is not enough to apply the relativistic formula of energy
, so the definition of energy in this case is
.
From the last equation,

where

and the mass of the neutron is
.
Then

the equivalent of
the speed of light.
Explanation:
it is given that, the linear charge density of a charge, 
Firstly, we can define the electric field for a small element and then integrate for the whole. The very small electric field is given by :
..........(1)
The linear charge density is given by :


Integrating equation (1) from x = x₀ to x = infinity



Hence, this is the required solution.