1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
11 months ago
15

A car of mass 1000 kg is heading east at 25 m/s. It collides with a car of mass 12000 kg heading north at 30 m/s. When the cars

collide, they stick together. A. What is the total momentum of the system before the collision? Remember that momentum is a vector quantity, and write the momentum is component notation, with x and y unit vectors. B. What is the total momentum of the system after the collision? Write the momentum is component notation, with x and y unit vectors. C. What is the velocity of the cars after the collision? Write the velocity in component notation, with x and y unit vectors. D. At what angle do the cars move after the collision
Physics
1 answer:
Tcecarenko [31]11 months ago
3 0

We know that

• The mass of the first car is 1000 kg.

,

• The velocity is 25m/s East.

,

• The mass of the second car is 1200 kg.

,

• The velocity is 30 m/s North.

Given that there are two directions involved (East and North), we do conservation of momentum twice, one in the x-direction and one in the y-direction.

The total momentum before the collision is

\vec{p}=m_1\cdot\vec{v}_1+m_2\cdot\vec{v}

<em>Observe that we have to use vectors.</em>

The momentum after the collision will be

\vec{p}=(m_1+m_2)\cdot\vec{v}_{12}

Note that after the collision, we have to add both masses and consider just one velocity because the problem indicates that the cars stick together after the collision.

According to the law of conservation of momentum, we make them equal

m_1\cdot\vec{v}+m_2\cdot\vec{v}=(m_1+m_2)\cdot\vec{v}_{12}_{}

Then, we have to add the momentum vectors, the image below shows the vectorial addition

Let's write the momentum vector of each car

\begin{gathered} p_1=m_1\cdot v_1\cdot i \\ p_2=m_2\cdot v_2\cdot j \end{gathered}

Note that "i" refers to the x-direction, and "j" refers to the y-direction. Let's use the given magnitudes.

\begin{gathered} p_1=1000\operatorname{kg}\cdot25m/s\cdot i=25000i(\frac{\operatorname{kg}\cdot m}{s}) \\ p_2=1200\operatorname{kg}\cdot30m/s\cdot j=36000j(\frac{\operatorname{kg}\cdot m}{s}) \end{gathered}

(A) The total momentum before the collision would be

\vec{p}=(25000i+36000j)(\frac{\operatorname{kg}\cdot m}{s})_{}

Now, we use this initial momentum vector to find the angle of the collision after the event happens.

\begin{gathered} \theta=\tan ^{-1}(\frac{y}{x})=\tan ^{-1}(\frac{36000}{25000}) \\ \theta\approx55.2 \end{gathered}

This means that the velocity after the collision has this direction of 55.2°.

Now, we have to find the module of the initial momentum vector

|\vec{p}|=\sqrt[]{(25000)^2+(36000)^2}\approx43829.21

Now, we use the following expression to find the velocity after the collision.

\begin{gathered} |v_{12}|=\sqrt[]{(\frac{1000\operatorname{kg}}{12000\operatorname{kg}+1000\operatorname{kg}}\cdot25m/s)^2+(\frac{1200\operatorname{kg}}{1200\operatorname{kg}+1000\operatorname{kg}}\cdot30m/s)^2} \\ |v_{12}|\approx16.48m/s \end{gathered}

Therefore, the velocity after the collision is 16.48 m/s.

The momentum after would be

\begin{gathered} \vec{p}=(m_1+m_2)\cdot\vec{v}_{12} \\ \vec{p}=2200\cdot(11.36i+16.36j) \end{gathered}

At last, the car moves at an angle of 55.2° after the collision.

You might be interested in
A student attaches a block to a vertical spring of unknown spring constant so that the block-spring system will oscillate if the
chubhunter [2.5K]

Answer:

x axis

Explanation:

3 0
2 years ago
Read 2 more answers
Which should be done in case of a laboratory accident?
stich3 [128]
Tell your instructor or teacher
4 0
2 years ago
Why is a rotting apple a reaction in which energy is neither absorbed nor released?
o-na [289]

Answer:

Hey

It would have to be C because no net energy is lost.

7 0
2 years ago
The atomic mass of an element is defined as the weighted average mass of that element’s
marishachu [46]

Answer:

False

Explanation:

Atomic mass (Also called Atomic Weight, although this denomination is incorrect, since the mass is property of the body and the weight depends on the gravity) Mass of an atom corresponding to a certain chemical element). The uma (u) is usually used as a unit of measure. Where u.m.a are acronyms that mean "unit of atomic mass". This unit is also usually called Dalton (Da) in honor of the English chemist John Dalton.

It is equivalent to one twelfth of the mass of the nucleus of the most abundant isotope of carbon, carbon-12. It corresponds roughly to the mass of a proton (or a hydrogen atom). It is abbreviated as "uma", although it can also be found by its English acronym "amu" (Atomic Mass Unit). However, the recommended symbol is simply "u".

<u> The atomic masses of the chemical elements are usually calculated with the weighted average of the masses of the different isotopes of each element taking into account the relative abundance of each of them</u>, which explains the non-correspondence between the atomic mass in umas, of an element, and the number of nucleons that harbors the nucleus of its most common isotope.

4 0
3 years ago
What two things are necessary for work to be done on an object?
NemiM [27]

Answer: Force and Movement

Explanation:

The first is that the object moves. The second is that a force must act on the object in the direction the object moves.

6 0
3 years ago
Other questions:
  • If the light strikes the plastic (from the water) at an angle θw, at what angle θa does it emerge from the plastic (into the air
    6·2 answers
  • A coil of wire with a current is called a(n)
    6·1 answer
  • Why should a tennis player "swing through" when hitting a tennis ball?​
    10·1 answer
  • A student has a mass (including clothes and shoes) of 65.0 kg. She drinks a 12 oz. can of soda, with a nutritional energy conten
    13·1 answer
  • Why might we expect venus and earth to be similar?
    10·1 answer
  • Which of the following is inversely proportional to the gravitational force between two masses?
    13·1 answer
  • Ludwig Boltzmann performed a simple, but powerful experiment to gather evidence concerning the velocity distribution of a sample
    12·1 answer
  • An athlete swims the length of 50m pool in 20sec, and
    5·1 answer
  • Microwave ovens emit microwave energy with a wavelength of 12.1 cm. What is the energy of exactly one photon of this microwave r
    7·1 answer
  • Identify scalar and vector quantities: a. The volume of a petrol tank. b. A length measured in meters. c. The jet taking off aga
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!