Answer:
The value of each charge is 4.22 x 10⁻⁵ C
Explanation:
Given;
distance between the two identical charges, d = 2 m
the force of repulsion between these two charges, F = 4N
Apply Coulomb's law;

Therefore, the value of each charge is 4.22 x 10⁻⁵ C
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

Answer:
magnetic energy (proton) and magnetic plasma.
Explanation:
- The solar fare consists of bright light that occurs in various wavelengths and is observed at the surface.
- They are not as strong as compared to the coronal mass ejection or CME. The solar fares consist of 10²² joules, while the plasma is ejected from the solar corona and can be clearly seen from a distance.
- The Solar flares represent an atmospheric disturbance and plasms are the medium for the growth and development of solar flare and lead to solar activity.
Answer:
Explanation:
Given dish width= 48ft
Depth = 4ft
Using equation of a parabola
x²= 4py
48² = 4p 4
4p = 576
P= 144ft
Thus the the receiver should be placed 144ft from t the vertex