Answer:
0.169
Explanation:
Let's consider the following reaction.
A(g) + 2B(g) ⇄ C(g) + D(g)
We can find the pressures at equilibrium using an ICE chart.
A(g) + 2 B(g) ⇄ C(g) + D(g)
I 1.00 1.00 0 0
C -x -2x +x +x
E 1.00-x 1.00-2x x x
The pressure at equilibrium of C is 0.211 atm, so x = 0.211.
The pressures at equilibrium are:
pA = 1.00-x = 1.00-0.211 = 0.789 atm
pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm
pC = x = 0.211 atm
pD = x = 0.211 atm
The pressure equilibrium constant (Kp) is:
Kp = pC × pD / pA × pB²
Kp = 0.211 × 0.211 / 0.789 × 0.578²
Kp = 0.169
Wave particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects.
Answer:
Potassium permanganate.
Explanation:
Both substances are dyes, but the methylene blue has a bigger molecular mass (319.85 g/mol), that means that the particles are bigger in comparison with the potassium permanganate that has a molecular mass of 158.034 g/mol.
Since the molar mass is the half in the case of potassium permanganate, it can be considered that the particle size is the half in size. In the agar, a smaller particle will present less resistance to flow, that means that it going to move faster.
Answer
321.8 g CaF2
321.5 g Al2(CO3)3