Option 4. ratio of electrons to protons
Isotope that has atomic number of 82 is stable. An element that has an atomic number ∠82 more stable except Tc and Pm. Also there is the concept that isotopes consisting a combination of even-even,even-odd,odd-even, and odd-odd are all stable. Many isotopes with no magic numbers of nucleons are stable
Answer:
The purpose of a filter paper inside a beaker is to retain the suspended solid particles found in the solution.
<em>The retention capacity of the filter paper will depend on the size of the pores of the filter</em>. Thus, for example, if the pores of the filter have a diameter of 1 mm, particles with a diameter greater than 1 mm will be retained, and the rest of the solution will pass through the pores.
The removal of impurities through filters is a physical separation process.
Answer:
pH = 4
Solution is acidic
Explanation:
Given data;
Hydronium ion concentration = 1 × 10⁻⁴ M
pH of solution = ?
Solution:
pH = -log [H₃O⁺]
pH = -log [ 1 × 10⁻⁴ ]
pH = 4
According to pH scale the pH 7 is neutral while the pH less than 7 is acidic and greater than 7 is basic. The given solution has pH 4 it means solution is acidic.
Answer:
=759.95 grams.
Explanation:
The molar mass of chromium is 51.9961 g/mol
Therefore the number of moles of chromium in 156 grams is:
Number of moles =mass/RAM
=156g/51.9961g/mol
=3 moles.
From the equation provided, 3 moles of chromium metal produce 2 moles of Chromium oxide.
Therefore 3 moles of chromium produce:
(3×2)/4 moles =1.5 moles of chromium oxide.
I mole of chromium oxide has a mass of 151.99 g
Thus 1.5 moles= 1.5mole ×151.99 g/mol
=759.95 grams.
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.