Answer:
The empirical formula = molecular formula = C13H18O2
Explanation:
in 100% compound we have 75.6 % Carbon ( Molar mass = 12g/mole), 8.80% hydrogen ( Molar mass = 1.01 g/mole) and 15.5% Oxygen (Molar mass = 16.01 g/mole).
Carbon: 75.6g / 12 = 6.29
Hydrogen: 8.80/ 1 = 8.80
Oxygen: 15.5/ 16 = 0.97
⇒0.97 is the smallest so we divide everything through by 0.97
C: 6.29 / 0.97 = 6.48 ≈ 6.5
H: 8.80 /0.97 = 9
O: 0.97 / 0.97 = 1
To get rid of decimals, we multiply by 2
C: 6.5 x 2 = 13
H: 9 x 2 = 18
O: 1 x 2 = 2
The empirical formula = C13H18O2
13x 12g/mol + 18x1g/mol + 2x 16g/mol = 156 + 18 + 32 = 206g/mol which is the molar mass of ibuprofen
The empirical formula = molecular formula = C13H18O2
The
equation for the photosynthesis reaction in which carbon dioxide and water
react to form glucose is .
The hear reaction is the difference between the bond dissociation energies in
the products and the bond dissociation energies of the reactants
The
reactant molecules have 12 C = O, 12 H - O bonds while the product molecules
have 5 C - C, 7 C – O, 5 H – O, and 6 O = O bonds. The average bond
dissociation energies for the bonds involved in the reaction are 191 for C = O,
112 for H – O, 83 C –C, 99 C – H, 86 C – O, 119 O = O.
Substitute
the average bond dissociation energies in the equation for and
calculate as follows
=
[12 (C=O) + 12 (H-O)] – [5(C-C) + 7(C-H) + 7 (C-O) + 5(H-O) + 6(O=O)]
=
[12x191 kcal/mol + 12x112 kcal//mol] – [5x83 kcal/mol + 7x99 kcal/mol + 7x86
kcal/mol + 5x112 kcal/mol + 6x119 kcal/mol]
=
3636 kcal/mol – 2984 kcal/mol = 652 kcal/mol x 4.184 Kj/1kcal = 2.73x10^3 kJ/mol
So,
enthalpy change for the reaction is 652 kcal/mol or 2.73x10^3 kJ/mol
<span> </span>
Answer:
I have no clue what the question is
Answer:
letter D.
Explanation:
it shows a pattern for determining the side of lengths of a triangle yeah the triangle had a model and a length
The answer to your question is C.)