Answer:
At the start of the process, the volume not occupied by the water is 2 m3
Explanation:
At the start of the process you have a half full tank. It means that also a half is empty (not occupied by water).
Since the volume is 4 m3, 2 m3 are full (occupied by water) and 2 m3 (not occupied by water).
The volume in time will be
![V(t)=V_0+(f_i-f_o)*t\\\\V(t) = 2 +(6.33/1000-3.25/1000)*t=2+0.00308*t \, \, [m3]](https://tex.z-dn.net/?f=V%28t%29%3DV_0%2B%28f_i-f_o%29%2At%5C%5C%5C%5CV%28t%29%20%3D%202%20%2B%286.33%2F1000-3.25%2F1000%29%2At%3D2%2B0.00308%2At%20%5C%2C%20%5C%2C%20%5Bm3%5D)
Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL
Sister chromatids are two identical copies of a single chromosome that are connected by a centromere. They occur as a result of a chromosome that duplicated during the S phase of the cell cycle.