The amount of carbon in fossils and artifacts decreases when the get older, so you can find out how old an object or fossil is by finding out how much carbon is in it.
Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
Answer:
Q = 0.50
No
Left
Explanation:
At a generic reversible equation
aA + bB ⇄ cC + dD
The reaction coefficient (Q) is the ratio of the substances concentrations:
![Q = \frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
Solids and liquid water are not considered in this calculus.
When the reaction achieves equilibrium (concentrations are constant), the Q value is named as Kc, which is the equilibrium constant of the reaction. If Q > Kc, it indicates that the concentration of the products is higher, so, the reaction must progress to the left and form more reactants; if Q < Kc, than the concentrations of the reactants, are higher, so, the reaction progress to the right.
In this case:
Q = ![\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Q = 0.50
So, Q > Kc, the reaction is not at equilibrium and it progresses to the left.
If you know the parent genotypes then you can make the Punnett square
Chemical reaction: 4PBr₃(g) → P₄(g) + 6Br₂<span>(g).
</span>Pressure equilibrium constant (Kp) express the relationship between product pressures and reactant pressures. The partial pressures of gases are used to calculate pressure equilibrium constant.
Kp = (p(P₄) · p(Br₂)⁶) ÷ p(PBr₃)⁴.
p(P₄) - partial pressure of phosphorus.
p(Br₂) - partial pressure of bromine.