The classification of it being a metal, nonmetal, or metalliod will be useful in the process of elimination to determine what it is. Then for the second test, meauring the atomin radius will narrow it down quicker to the mystery elemet's name.
Since you determined what part of the periodic table it's on, then when measuring the atomic radius, you should be able to pinpoint what the element is more surely.
There are 9 orbitals in the third energy level and 25 orbitals in the fifth energy level.
I hope this helps you.
To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
Answer:
The answer is
<h2>

</h2>
Explanation:
To find the number of atoms given the number of moles we use the formula
N = n × L
where
N is the number of entities
n is the number of moles
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question

Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>

</h3>
Hope this helps you