Answer:
B. Na and Li
Both are group I elements.
Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp = 
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp = 
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp = 
0.0104 = ![\frac{200 - P(NO_{2}) }{[P(NO_{2} )]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B200%20-%20P%28NO_%7B2%7D%29%20%20%7D%7B%5BP%28NO_%7B2%7D%20%29%5D%5E%7B2%7D%7D)
0.0104
+
- 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are
= 98.7 MPa and P(N₂O₄) = 101.3 MPa
Answer:
59.92 × 10²³ atoms are in 9.95 moles of iron
1.8 ×10²² molecules are in 0.03 moles of Carbon dioxide
1.19 moles are found in 7.20 x 10^23 atoms of platinum
Answer:
Qm = -55.8Kj/mole
Explanation:
NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l)
Qm = (mc∆T)water /moles acid
Given => 100ml(0.300M) NaOH(aq) + 100ml(0.300M)HNO₃(aq)
=> 0.03mole NaOH(aq) + 0.03mole HNO₃(aq)
=> 0.03mole NaNO₃(aq) + 0.03mole H₂O(l)
ΔH⁰rxn = [(200ml)(1.00cal/g∙°C)(37 – 35)°C]water / 0.03mole HNO₃
= 13,333 cal/mole x 4.184J/cal = 55,787J/mol = 55.8Kj/mole (exothermic)*
Heat of reactions comes from formation of H-Oxy bonds on formation of water of reaction and heats the 200ml of solvent water from 35⁰C to 37⁰C.
Answer:
D
Explanation:
Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. It is found in amino acids that make up proteins, in nucleic acids, that comprise the hereditary material and life's blueprint for all cells, and in many other organic and inorganic compounds.