Answer:
Present Time
Let X= Eric's age (4/5)X= Seth's age
Question: What are their ages now?________________________________________________________________________
Past (21 years ago)
X-21 =Eric's age (4/5)X-21=Seth's age
2*[4/5(X-21]=Eric's age
Therefore, X-21= 2*[4/5(X)-21]=Eric's age Substitution
_______________________________________________________________________
X-21= 8/5 X - 42 Solve for "X" by adding 42 to both sides.
X-21+42=(8/5) X
X+21 = (8/5)X Subtract "X" from both sides.
21=(3/5)X Multiply both sides of equation by reciprocal of (3/5), which is 5/3
21*(5/3)= X Finish the problem to find value of "X," which is Eric's age.
Then find 4/5 (X)= Seth's age
Answer:
The monument is approximately 86.6 feet tall
Step-by-step explanation:
The given monument parameters are;
The distance of the person from the monument = 50 feet
The angle of depression from the top of the monument to the person's feet = 64°
Given that the angle of elevation to the top of the monument from the person's feet = The angle of depression from the top of the monument to the person's feet, we have;
tan(Angle of depression) = tan(Angle of elevation) = (The height of the monument)/(The distance from the monument)
∴ The height of the monument = tan(Angle of depression) × The distance from the monument
Substituting the known values, gives;
The height of the monument = tan(60°) × 50 ≈ 86.6
The height of the monument ≈ 86.6 feet.
Substitute each x and the respecting y to the equation
The distance depends on the time.
So now we need to find the constant of variation or the constant of proportionality.
To do so we must find y(the dependent variable) and x(the independent variable).
To find the constant(k) we must find y/x
Since y/x=k
Then 2.25/.75=k
k=3
Answer:
H
Step-by-step explanation:
The parallel line BC divides the sides AD and AE in proportion, that is
=
, that is
=
( cross- multiply )
3AC = 8 ( divide both sides by 3 )
AC =
= 2
, hence
AE = AC + CE
= 2
+ 4 = 6
→ H