<u>Answer:</u> The mass of potassium superoxide required is 142.2 grams
<u>Explanation:</u>
The chemical equation for the reaction of potassium superoxide with water follows:

Number of moles of potassium superoxide reacted = 2 moles for given amount of heat released
To calculate the mass for given number of moles, we use the equation:

Molar mass of potassium superoxide = 71.1 g/mol
Moles of potassium superoxide = 2 moles
Putting values in above equation, we get:

Hence, the mass of potassium superoxide required is 142.2 grams
Answer:
A compound
Explanation:
It is a compound because two elements combined together dont make an element, a substance is also not it ans neither is a solution. It is A compound because compounds are combinations of two or more elements.
This is one of the ideal gas laws. Presumably the pressure remains the same so it is not part of the givens.
Formula
V / T = V1 / T1
Givens
- V = 56.05 mL
- T = 315.1 degrees Kelvin
- V1 = x
- T1 = 380.5 degrees Kelvin
Solution
56.05/315.1 = x/380.5 Simplify the left.
0.1779 = x / 380.5 Multiply both sides by 380.5
0.1779 * 380.5 = 380.5x/380.5
67.68 mL = x This is your answer
<h3>
Answer:</h3>
147.05 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
CuClO₃
<u>Step 2: Find MM</u>
Molar Mass of Cu - 63.55 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CuClO₃ - 63.55 + 35.45 + 3(16.00) = 147.05 g/mol