Answer:
The atomic number is the number of protons in the nucleus
The gas is ignited (I think) and combustion happens where the gasoline turns into gas (the state of being) and expands, pushing something and making the blades turn so
from stationary to explosive so potentioal to kenetic
Henry's law constant for oxygen is 0,0013 mol/L·<span>atm. Air has 21,0% oxygen.
concentration of oxygen at 1 atm: 0,0013 mol/L</span>·atm · 0,21 · 1 atm = 0,000273 mol/l.
concentration of oxygen at 1 atm: 0,0013 mol/L·atm · 0,21 · 0,892 atm = 0,000243 mol/l.
difference in concentration: 0,000273 - 0,000243 = 0,00003 mol/L.
n(oxygen) = 0,00003 mol/L · 4,40 L = 0,000132 mol.
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.
Answer:
The answer to your question is V2 = 434.7 l
Explanation:
Data
Volume 1 = V1 = 240 l Volume 2 = ?
Temperature 1 = T1 = 479°K Temperature 2 = T2 = 293°K
Pressure 1 = P1 = 300 KPa Pressure 2 = P2 = 101.325 Kpa
Process
1.- Use the combined gas law to solve this problem
P1V1/T1 = P2V2/t2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (300)(240)(293) / (479)(101.325)
3.- Simplification
V2 = 21096000 / 48534.675
4.- Result
V2 = 434.7 l