Answer:
Final vertical velocity = -29m/s
Horizontal distance = 100m
Height = 20.41m
Explanation:
1. The vertical final velocity can be calculated thus: vy = vyo - gt
Where;
vy = vertical velocity (m/s)
vyo = vertical initial velocity (20m/s)
g = acceleration due to gravity (9.8m/s²)
t = time (5s)
Hence, vy = vyo - gt
vy = 20 - (9.8 × 5)
vy = 20 - 49
vy = -29m/s
2. x = V0 x t
Where;
x = horizontal distance (m)
Vo = initial velocity
t = time (s)
x = 20 × 5
x = 100m
3. Maximum height = (voy)²/2g
= 20²/ 2 × 9.8
= 400/19.6
= 20.41m
We Know, F = m*a
F = 2200 * 3.4
F = 7480 Kg m/s²
So, your final answer is 7480
Answer:
The material must be durable (quality of the material requirement)
Explanation:
The design criteria set for the materials used for technological design are;
1) The materials should be affordable (less costly)
2) The materials should be last for a long duration (high durability)
3) The material should be readily available (easily sourced)
Therefore, given that the engineers initially had the criteria for the required plastic to be of high quality and to be readily available, and that the poly-carbonate they found is long lasting and not too costly, the criteria met that was set initially was the quality criteria of durability.
Answer:
a = 1.16 m/s²
Explanation:
In order to find the acceleration of the ball we will use 3rd equation of motion.
2as = Vf² - Vi²
where,
a = acceleration = ?
s = displacement = 21.9 m
Vf = Final Velocity = 7.14 m/s
Vi = Initial Velocity = 0 m/s (Since, ball starts from rest)
Therefore, using the values, we get:
2a(21.9 m) = (7.14 m/s)² - (0 m/s)²
a = (50.97 m²/s²)/(43.8 m)
<u>a = 1.16 m/s²</u>