Explanation:
The problem doesn't specify that the units have to be g/mL, so you can calculate the density in kg/L without converting the mass or volume.
Just make sure that either way, you write the units.
Yes, the friction is acting in the opposite direction you are pushing.
Answer:
d = 27.7 m
Explanation:
Here the car is driving on the inclined plane
So here we can say that work done by the gravity and work done by friction is equal to change in kinetic energy of the system
So here we can write it as

now we have
m = 1700 kg






Answer:A piece of driftwood moves up and down as water waves pass beneath it. However, it does not move toward the shore with the waves. What does this demonstrate about the propagation of waves through a medium?
A) Waves transmit energy but not matter as they progress through a medium.
B) Waves transmit matter but not energy as they progress through a medium.
C) Waves do not transmit matter or energy as they progress through a medium.
D) Waves transmit energy as well as matter as they progress through a medium.
Explanation:
A piece of driftwood moves up and down as water waves pass beneath it. However, it does not move toward the shore with the waves. What does this demonstrate about the propagation of waves through a medium?
A) Waves transmit energy but not matter as they progress through a medium.
B) Waves transmit matter but not energy as they progress through a medium.
C) Waves do not transmit matter or energy as they progress through a medium.
D) Waves transmit energy as well as matter as they progress through a medium.
Answer:

Explanation:
A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.
is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to
and
at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of
.
Let the electric field intensity due to
be +
and that due to
be -
since the charge is negative. Hence at the origin;

From equation (1) above, we obtain the following;

From Coulomb's law the following relationship holds;

where
is the distance of
from the origin,
is the distance of
from the origin and k is the electrostatic constant.
It therefore means that from equation (2) we can write the following;

k can cancel out from both side of equation (3), so that we finally obtain the following;

Given;

Substituting these values into equation (4); we obtain the following;

