0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
V=5 L
P = 1.05 atm
T = 296 K
Putting value in the given equation:


Moles = 0.216 moles
Hence, 0.216 moles of gas can the container hold if a sealed container can hold 0.325 L of gas at 1.00 atm and 293 K.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer: They are arranged by atomic number.
I believe the answer is 47.25g
let me know if you need the workings i'll try and put it up
Answer:
The tank with O₂ weighs more.
Explanation:
We can find the mass of gas using the ideal gas equation.

Considering the pressure (P), volume (V), temperature (T) and ideal gas constant (R) are the same, we can establish that:
m ∝ M
The mass is directly proportional to the molar mass. The molar mass of O₂ (32 g/mol) is higher than the molar mass of N₂ (28 g/mol). Therefore, the tank with O₂ weighs more.
Answer:
Yes
Explanation:
They continue to split and grow and split again until the organism that is carrying them dies.
Sorry I don't really know how to explain:(