Answer: D. Mutation in coding sequences are more likely to be deleterious to the organism than mutations in noncoding sequences.
Explanation: It was not likely to be that the coding sequences are replicated more often. The only possible explanation is that the mutations in coding is more likely to be deleterious to the organism than mutations because it is in a non coding sequence.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
<em>I</em><em> </em><em>DONT</em><em> </em><em>KNOW</em><em> </em><em>THE</em><em> </em><em>ANSWER</em><em> </em><em>OF</em><em> </em><em>NO</em><em>.</em><em>B</em>
<em>SO</em><em> </em><em>SORRY</em><em> </em><em>FOR</em><em> </em><em>THAT</em><em>!</em><em>!</em><em>!</em>
Explanation:
Mole ratio of Oxygen to Hydrogen gas = 1 : 2.
If we use 3.0 moles of oxygen gas, we would need 3.0 * 2 = 6.0 mol of hydrogen gas.
However we only have 4.2 mol of hydrogen. Therefore hydrogen is limiting and oxygen is in excess. (B)
<span>When naming compounds, the first thing you need to do is decide if the compound is ionic or molecular. *Ionic compounds
will contain both metals and non-metals, or at least one polyatomic
ion. *Acids will always include the (aq) symbol beside the formula, and
the name will include the word acid.</span>